怎么用正切函数的连分数展开证明圆周率π是无理数?

说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。

指出与无理数e有关的六个式子的等价关系并予以证明。

关于数e/第二重要极限的几种证明方法

推广了初等数学中“1/2是无理数”和“三角形内角平分线定理”两个推论,并给出了初等数学方法证明。

根据sinx的幂级数展开式和莱布尼茨定理,利用反证法证明了当n为非零整数时,sin(1/n)为无理数。

推导一种带有积分形式余项的Taylor公式,并用这个公式比较简单地证明e是无理数。

素数的平方根之和是一个无理数

文章引入一类广义斐波那契数列,给出其收敛的充分必要条件,并利用该类广义斐波那契数列证明了任何自然数的算术平方根或是自然数或是无理数。

研究循环连分数与二次无理数关系问题 ,首先证明了任何循环连分数皆为二次无理数 ,并给出化循环连分数为二次无理数的一般方

第二换元积分法是求函数不定积分的一种重要方法,具有一定的适用范围,对某些无理函数的积分的求解通常使用该方法。

有些比较复杂的无理函数的积分,用传统的方法求解有困难,甚至无法积分出来,而用组合积分法可以巧妙地解决无法积分的问题。

阐明了求无理函数不定积分的欧拉变换 ,通过选取Q(t)的方法分析了欧拉变换的来龙去脉 ,揭示出欧拉变换的本质 ,减少了教学难

e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:

注:x^y表示x的y次方。

随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。

e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。这个e究竟是何方神圣呢?

在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢?

这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。

我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。

读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什么关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。

如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了。事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事。比如说你知道第一个对数表是谁发明的吗?是纳皮尔(john napier)。没有听说过?这很正常,我也是读到这本书才认识他的。重要的是要下一个问题。你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什么计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。

}

连分数叫做有限连分数。常简记为【α0,α1,…,αn】。当α0是整数、α1,…,αn是正整数时,则叫做有限简单连分数,当n无限时,【α0,α1,…】称为无限简单连分数。通常连分数叫做有限连分数。常简记为【α0,α1,…,αn】。当α0是整数、α1,…,αn是正整数时,则叫做有限简单连分数,当n无限时,【α0,α1,…】称为无限简单连分数。通常连分数均指简单连分数。给定一有理数,用熟知的辗转相除法,可展成有限连分数即,其中α0,α1,…,αN是辗转相除法中依次得到的不完全商,规定αN>1,则表法惟一。如果α是一个无理数,那么α可展成无限连分数,且表法惟一。反之,一有限连分数表一有理数,一无限连分数表一无理数。 渐近分数和完全商  在连分数【α0,α1,…,αn,…】中取而写,叫做连分数【α0,α1,…,αn,…】的第n个渐近分数。 定义αń=【αn,αn+1,…】为连分数【α0,α1,…,αn,…】的第n个完全商。 渐近分数有如下简单关系: ① ② ③(pn,qn)=1和qn≥n (n≥2) ④ 由此可得存在;⑤设α =【α0,α1,…,αn,…】,n≥1,01。 循环连分数  设α=【α0,α1,…,αn,…】,如果l≥m时,对某个固定的正整数k,有αl=αl+k,那么这样的连分数叫做循环连分数,这种最小的 k叫做它的周期,记为 。例如 等。运用渐近分数、完全商的性质以及抽屉原理,J.-L.拉格朗日证明了有关循环连分数的一个重要定理:一个连分数为循环连分数,则此数是某个有理系数的二次不可约多项式的根;反之亦然。 当D>0且不是平方数,则,其中函数【x】表示不超过x的最大整数。此外,设佩尔方程x2-Dy2=1的最小解为ε,则的周期k满足。 应用举例  连分数有许多应用。例如:①1891年,A.胡尔维茨证明了:在α 的三个连续渐近分数中必有一个适合。由此可得,任一无理数α,有无穷多个有理数。式中是最佳的,即设,则必有一无理数α,使不能有无穷多个解,如就是这样一个数;②设D>0且不是平方数,之连分数展开式中αń可表为,此处Pn及Qn皆为整数。设n是最小的正整数,使(-1)n-1Qn=1,则x=pn-1,y=qn-1是佩尔方程x2-Dy2=1的最小解;③利用连分数可以证明数论中一个著名的定理:设素数p呏1(mod4),则p可表为二整数的平方和;④在近似计算方面,如求多项式的根的近似值,等等。

}

我在之前制作的视频中,多次谈到了圆周率π。比如,我介绍过阿基米德和刘徽计算圆周率的方法——,还谈到了蒲丰利用一根针计算圆周率的方法——。人类使用和计算圆周率已经有了数千年的历史,可是了解圆周率的数学性质其实是最近二三百年的事情。最初人们总是希望能够计算出圆周率的准确值,写成一个分数或者有限小数的形式,可是数千年来的一次次的努力都失败了。

直到两百多年前,数学家们才证明了圆周率是一个无理数(无限不循环小数),是不可能用有限小数或者分数写出来的。可是,你知道这个命题如何证明吗?这回我们就来讨论一下。

我们首先来复习一下基础概念:什么是无理数?

初中时候我们学习过数轴,数轴上面密密麻麻布满了点,有的点是整数,有的点不是整数,但是每一个点就对应了一个数,这个数叫做实数。实数与数轴上的点一一对应。
我们可以把实数分成两类:有理数和无理数。
有理数是那些可以写成两个整数的比的数,例如:
这些数字要么本身是整数,要么等于两个整数的比,所以都是有理数。
有时候,我们又把有理数分为三种,分别是整数、有限小数和循环小数。有理数有无穷多个,但是我们其实可以把有理数一个一个排列起来,所以有理数的个数其实是与自然数一样多的,这一点我在精读《从一到无穷大》的专栏中说到过证明。
数轴上除了有理数外,其余的数字叫做无理数——无理数不能写成两个整数的比,它们是无限不循环小数。例如
无理数有无穷多个,而且无理数没有办法一个一个排列起来,它的个数比有理数多得多。
现在我们已经复习完了有理数和无理数的概念。要证明一个数字是有理数很简单:只要把这个数字表示成两个整数的比就行了。但是要证明一个数字是无理数,就要证明它不能表示成两个整数的比,数学上如何去证明一件事情不可能呢?这就需要用到一种数学方法——反证法了。
反证法的原理是:我们要证明一件事不可能,就首先假设这件事可能,然后推导出矛盾的结果,于是就证明了它不可能。例如:我们可以通过反证法证明√2是一个无理数。
求证:√2是一个无理数
首先假设√2是有理数,然后推导出矛盾的结果,从而证明√2是无理数。我们利用这种方法,就能证明圆周率是无理数了。
200多年前,瑞士著名数学家欧拉研究了关于连分数的问题。
所谓连分数是指形如下面的数字:
其中ai都是整数。数学家们证明:任何一个实数都可以唯一对应一个(特定规则的)连分数,并且有理数对应的连分数是有限层数,而无理数对应的连分数有无限层。例如,无理数√2可以表示成如下形式:
在欧拉的启发下,欧拉的同事,瑞士数学家兰伯特想到:能够顺着连分数的思路,证明圆周率是无理数呢?1761年,兰伯特给出了这个证明。
  • 首先,兰伯特证明了:正切函数可以展开成一种类似于连分数的函数形式:

  • 然后,兰伯特根据以上表达式证明:如果x是一个有理数,则tan(x)一定是无理数。

  • 最后,利用反证法:设π是有理数,则π/4也是有理数,于是按照上面的证明,tan(π/4)应该是无理数。但是tan(π/4)=1是一个有理数,发生矛盾。因此π是无理数,证明完毕。

看起来,兰伯特的方法似乎没有多么繁琐,可是如何证明tan(x)可以写成这样的展开式?又如何通过这个展开式证明x是有理数时tan(x)一定是无理数呢?这个过程过于冗长,在这里就不再赘述。
从兰伯特给出了圆周率的是无理数的第一个证明后,数学家们陆续提出了一些其他的证明方式。其中,二十世纪的美国数学家伊万.尼云给出的方法最为简洁,他写的论文总共不到一页纸。小伙伴们保持关注,下一回再给大家介绍伊万的证明方法。

辛辛苦苦写的文章,点个“在看”和“赞”再走吧!

}

我要回帖

更多关于 泰勒级数展开 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信