简述Kubernetes Calico网络组件实现原理?

Kubernetes网络开源组件 摘要:在本章主要了解支持Kubernetes的开源第三方的网络组件,了解这其中的网络原理和工作流程,同时掌握基本的网络术语。 关键字:Docker;CentOS;版本; 1 技术术语 1.1 IPAM IP地址管理;这个IP地址管理并不是容器所特有的,传统的网络比如说DHCP其实也是一种IPAM,到了容器时代我们谈IPAM,主流的两种方法: 基于CIDR的IP地址段分配地或者精确为每一个容器分配IP。但总之一旦形成一个容器主机集群之后,上面的容器都要给它分配一个全局唯一的IP地址,这就涉及到IPAM的话题。 1.2 Overlay 在现有二层或三层网络之上再构建起来一个独立的网络,这个网络通常会有自己独立的IP地址空间、交换或者路由的实现。 1.3 IPSesc 一个点对点的一个加密通信协议,一般会用到Overlay网络的数据通道里。 1.4 vxLAN 由VMware、Cisco、RedHat等联合提出的这么一个解决方案,这个解决方案最主要是解决VLAN支持虚拟网络数量(4096)过少的问题。因为在公有云上每一个租户都有不同的VPC,4096明显不够用。就有了vxLAN,它可以支持1600万个虚拟网络,基本上公有云是够用的。 1.5 网桥Bridge 连接两个对等网络之间的网络设备,但在今天的语境里指的是Linux Bridge,就是大名鼎鼎的Docker0这个网桥。 1.6 BGP 主干网自治网络的路由协议,今天有了互联网,互联网由很多小的自治网络构成的,自治网络之间的三层路由是由BGP实现的。 1.7 SDN、Openflow 软件定义网络里面的一个术语,比如说我们经常听到的流表、控制平面,或者转发平面都是Openflow里的术语。 2 容器网络方案 2.1 隧道方案( Overlay Networking ) 隧道方案在IaaS层的网络中应用也比较多,大家共识是随着节点规模的增长复杂度会提升,而且出了网络问题跟踪起来比较麻烦,大规模集群情况下这是需要考虑的一个点。 2.1.1 Weave 基于BGP协议的路由方案,支持很细致的ACL控制,对混合云亲和度比较高。 2.2.2 Macvlan 从逻辑和Kernel层来看隔离性和性能最优的方案,基于二层隔离,所以需要二层路由器支持,大多数云服务商不支持,所以混合云上比较难以实现。 3 Flannel容器网络 Flannel之所以可以搭建kubernets依赖的底层网络,是因为它可以实现以下两点: 它给每个node上的docker容器分配相互不想冲突的IP地址; 它能给这些IP地址之间建立一个覆盖网络,同过覆盖网络,将数据包原封不动的传递到目标容器内。 3.1 Flannel介绍 Flannel是CoreOS团队针对Kubernetes设计的一个网络规划服务,简单来说,它的功能是让集群中的不同节点主机创建的Docker容器都具有全集群唯一的虚拟IP地址。 在默认的Docker配置中,每个节点上的Docker服务会分别负责所在节点容器的IP分配。这样导致的一个问题是,不同节点上容器可能获得相同的内外IP地址。并使这些容器之间能够之间通过IP地址相互找到,也就是相互ping通。 Flannel的设计目的就是为集群中的所有节点重新规划IP地址的使用规则,从而使得不同节点上的容器能够获得“同属一个内网”且”不重复的”IP地址,并让属于不同节点上的容器能够直接通过内网IP通信。 Flannel实质上是一种“覆盖网络(overlaynetwork)”,也就是将TCP数据包装在另一种网络包里面进行路由转发和通信,目前已经支持udp、vxlan、host-gw、aws-vpc、gce和alloc路由等数据转发方式,默认的节点间数据通信方式是UDP转发。 4 Calico容器网络 4.1 Calico介绍 Calico是一个纯3层的数据中心网络方案,而且无缝集成像OpenStack这种IaaS云架构,能够提供可控的VM、容器、裸机之间的IP通信。Calico不使用重叠网络比如flannel和libnetwork重叠网络驱动,它是一个纯三层的方法,使用虚拟路由代替虚拟交换,每一台虚拟路由通过BGP协议传播可达信息(路由)到剩余数据中心。 Calico在每一个计算节点利用Linux

}

架构师普遍有这样的愿景:在系统中有ServiceA、ServiceB、ServiceC这3种服务,其中ServiceA需要部署3个实例,ServiceB与ServiceC各自需要部署5个实例,希望有一个平台(或工具)自动完成上述13个实例的分布式部署,并且持续监控它们。

师普遍有这样的愿景:在系统中有ServiceA、ServiceB、ServiceC这3种服务,其中ServiceA需要部署3个实例,ServiceB与ServiceC各自需要部署5个实例,希望有一个平台(或工具)自动完成上述13个实例的部署,并且持续监控它们。当发现某个服务器宕机或者某个服务实例发生故障时,平台能够自我修复,从而确保在任何时间点正在运行的服务实例的数量都符合预期。这样一来,团队只需关注服务开发本身,无须再为基础设施和运维监控的事情头疼了。

Kubernetes出现之前,没有一个平台公开声称实现了上面的愿景。Kubernetes是业界第一个将服务这个概念真正提升到第一位的平台。在Kubernetes的世界里,所有概念与组件都是围绕Service运转的。正是这种突破性的设计,使Kubernetes真正解决了多年来困扰我们的分布式系统里的众多难题,让团队有更多的时间去关注与业务需求和业务相关的代码本身,从而在很大程度上提高整个软件团队的工作效率与投入产出比。

Kubernetes里的Service其实就是微服务架构中微服务的概念,它有以下明显特点。

  • 每个Service都分配了一个固定不变的虚拟IP地址——Cluster IP。
  • 客户端访问一个 Service时,就好像访问一个远程的TCP/UDP服务,只要与Cluster IP建立连接即可,目标端口就是某个Service Port。

DNS Server,这样一来,微服务架构中的服务发现这个基本问题得以巧妙解决,不但不用复杂的服务发现API供客户端调用,还使所有以TCP/IP方式通信的分布式系统都能方便地迁移到Kubernetes平台上,仅从这个设计来看,Kubernetes就远胜过其他产品。

我们知道,在每个微服务的背后都有多个进程实例来提供服务,在Kubernetes平台上,这些进程实例被封装在Pod中,Pod基本上等同于Docker容器,稍有不同的是,Pod其实是一组密切捆绑在一起并且“同生共死”的 Docker 容器,这组容器共享同一个网络栈与文件系统,相互之间没有隔离,可以直接在进程间通信。最典型的例子是Kubenetes Sky DNS

那么,Kubernetes里的 Service 与 Pod 是如何对应的呢?我们怎么知道哪些Pod 为某个Service提供具体的服务?下图给出了答案——“贴标签”。

每个Pod都可以贴一个或多个不同的标签(Label),而每个Service都有一个“标签选择器”(Label Selector),标签选择器确定了要选择拥有哪些标签的对象。下面这段YAML格式的内容定义了一个被称为ku8-redis-master的Service,它的标签选择器的内容为“app: ku8-redis-master",表明拥有“app=

如果我们需要一个Service在任意时刻都有N个Pod实例来提供服务,并且在其中1个Pod实例发生故障后,及时发现并且自动产生一个新的Pod实例以弥补空缺,那么我们要怎么做呢?答案就是采用 Deployment/RC,它的作用是告诉Kubernetes,拥有某个特定标签的 Pod需要在Kubernetes集群中创建几个副本实例。Deployment/RC的定义包括如下两部分内容。

至此,上述YAML文件创建了一个一主二从的Redis集群,其中Redis Master被定义为一个微服务,可以被其他Pod或 Service访问,如下图所示。

Service进行通信,以实现Redis 主从同步功能。

scale命令行功能实现扩容即可。命令如下,我们发现,服务的水平扩容变得如此方便:

CPU利用率会不断变化,在这些Pod 的CPU平均利用率超过80%后,就会自动扩容,直到CPU利用率下降到80%以下或者最多达到5个副本位置,而在请求的压力减小后,Pod的副本数减少为1个,用下面的HPA命令即可实现这一目标:

除了很方便地实现微服务的水平扩容功能,Kubernetes还提供了使用简单、功能强大的微服务滚动升级功能(rolling update),只要一个简单的命令即可快速完成任务。举个例子,假如我们要将上述Redis Slave服务的镜像版本从devopsbq/redis-slave升级为leader/redis-slave,则只要执行下面这条命令即可:

滚动升级的原理如下图所示,Kubernetes在执行滚动升级的过程中,会创建一个新的RC,这个新的RC使用了新的Pod镜像,然后Kubernetes每隔一段时间就将旧RC的replicas数减少一个,导致旧版本的Pod副本数减少一个,然后将新RC的replicas数增加一个,于是多出一个新版本的Pod副本,在升级的过程中 Pod副本数基本保持不变,直到最后所有的副本都变成新的版本,升级才结束。

集群中的其他节点被称为Node节点,属于工人(Worker 节点),它们都由Master 节点领导,主要负责照顾各自节点上分配的Pod副本。下面这张图更加清晰地表明了Kubernetes各个进程之间的交互关系。

从上图可以看到,位于中心地位的进程是API Server,所有其他进程都与它直接交互,其他进程之间并不存在直接的交互关系。那么,APl Server的作用是什么呢?它其实是Kubernetes的数据网关,即所有进入Kubernetes 的数据都是通过这个网关保存到Etcd数据库中的,同时通过API Server将Eted里变化的数据实时发给其他相关的Kubernetes进程。API Server 以REST方式对外提供接口,这些接口基本上分为以下两类。

  • 所有资源对象的CRUD API:资源对象会被保存到Etcd中存储并提供Query接口,比如针对Pod、Service及RC等的操作。
  • 资源对象的 Watch API:客户端用此API来及时得到资源变化的相关通知,比如某个Service 相关的Pod实例被创建成功,或者某个Pod 状态发生变化等通知,Watch API主要用于Kubernetes 中的高效自动控制逻辑。

下面是上图中其他Kubernetes进程的主要功能。

  • controller manager:负责所有自动化控制事物,比如RC/Deployment的自动控制、HPA自动水平扩容的控制、磁盘定期清理等各种事务。
  • kubelet:负责本Node节点上Pod实例的创建、监控、重启、删除、状态更新、性能采集并定期上报 Pod 及本机 Node节点的信息给Master节点,由于Pod实例最终体现为Docker'容器,所以Kubelet还会与Docker交互。

在理解了Kubernetes各个进程的功能后,我们来看看一个RC 从YAML定义到最终被部署成多个Pod 及容器背后所发生的事情。为了很清晰地说明这个复杂的流程,这里给出一张示意图。

Manager就得到了通知,它会读取RC的定义,然后比较在RC中所控制的Pod 的实际副本数与期待值的差异,然后采取对应的行动。此刻,Controller Manager 发现在集群中还没有对应的Pod实例,就根据RC里的Pod模板(Template)定义,创建一个Pod并通过API Server保存到Etcd中。类似地,Scheduler进程监听所有 Pod,一旦发现系统产生了一个新生的Pod,就开始执行调度逻辑,为该Pod 安排一个新家(Node),如果一切顺利,该Pod就被安排到某个Node节点上,即Binding to a Node。接下来,Scheduler进程就把这个信息及 Pod状态更新到Etcd里,最后,目标Node节点上的Kubelet监听到有新的Pod被安排到自己这里来了,就按照Pod里的定义,拉取容器的镜像并且创建对应的容器。在容器成功创建后,Kubelet进程再把 Pod的状态更新为Running 并通过API Server更新到 Etcd 中。如果此 Pod还有对应的Service,每个Node上的Kube-proxy进程就会监听所有Service及这些Service对应的Pod实例的变化,一旦发现有变化,就会在所在 Node节点上的 iptables 里增加或者删除对应的NAT转发规则,最终实现了Service的智能负载均衡功能,这一切都是自动完成的,无须人工干预。

那么,如果某个Node'宕机,则会发生什么事情呢?假如某个Node宕机一段时间,则因为在此节点上没有Kubelet进程定时汇报这些Pod 的状态,因此这个Node 上的所有Pod'实例都会被判定为失败状态,此时Controller Manager会将这些Pod删除并产生新的Pod实例,于是这些Pod被调度到其他 Node 上创建出来,系统自动恢复。

本节最后说说Kube-proxy的演变,如下图所示。

的流量通过NAT方式重定向到本机的Kube-proxy,在这个过程中涉及网络报文从内核态到用户态的多次复制,因此效率不高。Kube-proxy 之后的版本改变了实现方式,在生成 iptables规则时,直接NAT 到目标Pod地址,不再通过Kube-proxy进行转发,因此效率更高、速度更快,采用这种方式比采用客户端负载均衡方式效率稍差一点,但编程简单,而且与具体的通信协议无关,适用范围更广。此时,我们可以认为Kubernetes Service基于 iptables机制来实现路由和负载均衡机制,从此以后,Kube-proxy已不再是一个真正的“proxy"”,仅仅是路由规则配置的一个工具类“代理”。

基于iptables 实现的路由和负载均衡机制虽然在性能方面比普通Proxy提升了很多,但也存在自身的固有缺陷,因为每个Service都会产生一定数量的 iptables 规则。在Service数量比较多的情况下,iptables

}

最近在搞paas的内容,也刚接触了kubernetes,都涉及到了网络覆盖的内容,也就是跨主机容器之间的通信,本身docker有原生的跨主机通信方案,但是效率很差。所以出现了一系列的开源组件,如flannel,calico,weave等。这里主要介绍一下calico和fannel

首先请看calico的架构图,如下图。

Felix:主要负责路由配置以及ACLS规则的配置以及下发,它存在在每个node节点上。

etcd:分布式键值存储,主要负责网络元数据一致性,确保Calico网络状态的准确性,可以与kubernetes共用;

如下图所示,描述了从源容器经过源宿主机,经过数据中心的路由,然后到达目的宿主机最后分配到目的容器的过程。

整个过程中始终都是根据iptables规则进行路由转发,并没有进行封包,解包的过程,这和flannel比起来效率就会快多了。

从上述的原理可以看出,flannel在进行路由转发的基础上进行了封包解包的操作,这样浪费了CPU的计算资源。下图是从网上找到的各个开源网络组件的性能对比。可以看出无论是带宽还是网络延迟,calico和主机的性能是差不多的。

原理已经搞得差不多了,那么就应该搭建calico的网络环境了,我基于kubernetes,整合了calico网络,具体的部署方法请见下一篇:kubernetes整合calico网络部署方法。

}

我要回帖

更多关于 简述arp欺骗的实现原理 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信