ws2812B8*32位的灯板,arduino控制led灯的亮度上怎么实现用RGB转换HSV颜色模型的方式改变亮度?

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞不掂的问题,希望能够抛砖引玉。【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)实验六十: 直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块知识点:WS2812B芯片是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,还包含有高精度的内部振荡器和12V高压可编程定电流控制部分,有效保证了像素点光的颜色高度一致。数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN端接受从控制器传输过来的数据,首先送过来的24bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少24bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。WS2812主要特点1、智能反接保护,电源反接不会损坏IC。2、IC控制电路与LED点光源公用一个电源。3、控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。4、内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。5、内置上电复位和掉电复位电路。6、每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示,扫描频率不低于400Hz/s。7、串行级联接口,能通过一根信号线完成数据的接收与解码。8、任意两点传传输距离在不超过5米时无需增加任何电路。9、当刷新速率30帧/秒时,级联数不小于1024点。10、数据发送速度可达800Kbps。11、光的颜色高度一致,性价比高。Arduino实验接线示意图【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)实验六十:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块项目二十八:二维 XY 像素矩阵闪烁灯实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验六十一:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块
项目二十八:二维 XY 像素矩阵闪烁灯
*/
#include <FastLED.h>
#define LED_PIN
5
#define COLOR_ORDER GRB
#define CHIPSET
WS2811
#define BRIGHTNESS 33
// Helper functions for an two-dimensional XY matrix of pixels.
// Simple 2-D demo code is included as well.
//
//
XY(x,y) takes x and y coordinates and returns an LED index number,
//
for use like this:
leds[ XY(x,y) ] == CRGB::Red;
//
No error checking is performed on the ranges of x and y.
//
//
XYsafe(x,y) takes x and y coordinates and returns an LED index number,
//
for use like this:
leds[ XYsafe(x,y) ] == CRGB::Red;
//
Error checking IS performed on the ranges of x and y, and an
//
index of "-1" is returned.
Special instructions below
//
explain how to use this without having to do your own error
//
checking every time you use this function.
//
This is a slightly more advanced technique, and
//
it REQUIRES SPECIAL ADDITIONAL setup, described below.
// Params for width and height
const uint8_t kMatrixWidth = 16;
const uint8_t kMatrixHeight = 16;
// Param for different pixel layouts
const bool
kMatrixSerpentineLayout = true;
const bool
kMatrixVertical = false;
// Set 'kMatrixSerpentineLayout' to false if your pixels are
// laid out all running the same way, like this:
//
//
0 >
1 >
2 >
3 >
4
//
//
.----<----<----<----'
//
//
5 >
6 >
7 >
8 >
9
//
//
.----<----<----<----'
//
//
10 > 11 > 12 > 13 > 14
//
//
.----<----<----<----'
//
//
15 > 16 > 17 > 18 > 19
//
// Set 'kMatrixSerpentineLayout' to true if your pixels are
// laid out back-and-forth, like this:
//
//
0 >
1 >
2 >
3 >
4
//
//
//
9 <
8 <
7 <
6 <
5
//
//
//
10 > 11 > 12 > 13 > 14
//
//
//
19 < 18 < 17 < 16 < 15
//
// Bonus vocabulary word: anything that goes one way
// in one row, and then backwards in the next row, and so on
// is call "boustrophedon", meaning "as the ox plows."
// This function will return the right 'led index number' for
// a given set of X and Y coordinates on your matrix.
// IT DOES NOT CHECK THE COORDINATE BOUNDARIES.
// That's up to you.
Don't pass it bogus values.
//
// Use the "XY" function like this:
//
//
for( uint8_t x = 0; x < kMatrixWidth; x++) {
//
for( uint8_t y = 0; y < kMatrixHeight; y++) {
//
//
// Here's the x, y to 'led index' in action:
//
leds[ XY( x, y) ] = CHSV( random8(), 255, 255);
//
//
}
//
}
//
//
uint16_t XY( uint8_t x, uint8_t y)
{
uint16_t i;
if( kMatrixSerpentineLayout == false) {
if (kMatrixVertical == false) {
i = (y * kMatrixWidth) + x;
} else {
i = kMatrixHeight * (kMatrixWidth - (x+1))+y;
}
}
if( kMatrixSerpentineLayout == true) {
if (kMatrixVertical == false) {
if( y & 0x01) {
// Odd rows run backwards
uint8_t reverseX = (kMatrixWidth - 1) - x;
i = (y * kMatrixWidth) + reverseX;
} else {
// Even rows run forwards
i = (y * kMatrixWidth) + x;
}
} else { // vertical positioning
if ( x & 0x01) {
i = kMatrixHeight * (kMatrixWidth - (x+1))+y;
} else {
i = kMatrixHeight * (kMatrixWidth - x) - (y+1);
}
}
}
return i;
}
// Once you've gotten the basics working (AND NOT UNTIL THEN!)
// here's a helpful technique that can be tricky to set up, but
// then helps you avoid the needs for sprinkling array-bound-checking
// throughout your code.
//
// It requires a careful attention to get it set up correctly, but
// can potentially make your code smaller and faster.
//
// Suppose you have an 8 x 5 matrix of 40 LEDs.
Normally, you'd
// delcare your leds array like this:
//
CRGB leds[40];
// But instead of that, declare an LED buffer with one extra pixel in
// it, "leds_plus_safety_pixel".
Then declare "leds" as a pointer to
// that array, but starting with the 2nd element (id=1) of that array:
//
CRGB leds_with_safety_pixel[41];
//
CRGB* const leds( leds_plus_safety_pixel + 1);
// Then you use the "leds" array as you normally would.
// Now "leds[0..N]" are aliases for "leds_plus_safety_pixel[1..(N+1)]",
// AND leds[-1] is now a legitimate and safe alias for leds_plus_safety_pixel[0].
// leds_plus_safety_pixel[0] aka leds[-1] is now your "safety pixel".
//
// Now instead of using the XY function above, use the one below, "XYsafe".
//
// If the X and Y values are 'in bounds', this function will return an index
// into the visible led array, same as "XY" does.
// HOWEVER -- and this is the trick -- if the X or Y values
// are out of bounds, this function will return an index of -1.
// And since leds[-1] is actually just an alias for leds_plus_safety_pixel[0],
// it's a totally safe and legal place to access.
And since the 'safety pixel'
// falls 'outside' the visible part of the LED array, anything you write
// there is hidden from view automatically.
// Thus, this line of code is totally safe, regardless of the actual size of
// your matrix:
//
leds[ XYsafe( random8(), random8() ) ] = CHSV( random8(), 255, 255);
//
// The only catch here is that while this makes it safe to read from and
// write to 'any pixel', there's really only ONE 'safety pixel'.
No matter
// what out-of-bounds coordinates you write to, you'll really be writing to
// that one safety pixel.
And if you try to READ from the safety pixel,
// you'll read whatever was written there last, reglardless of what coordinates
// were supplied.
#define NUM_LEDS (kMatrixWidth * kMatrixHeight)
CRGB leds_plus_safety_pixel[ NUM_LEDS + 1];
CRGB* const leds( leds_plus_safety_pixel + 1);
uint16_t XYsafe( uint8_t x, uint8_t y)
{
if( x >= kMatrixWidth) return -1;
if( y >= kMatrixHeight) return -1;
return XY(x,y);
}
// Demo that USES "XY" follows code below
void loop()
{
uint32_t ms = millis();
int32_t yHueDelta32 = ((int32_t)cos16( ms * (27/1) ) * (350 / kMatrixWidth));
int32_t xHueDelta32 = ((int32_t)cos16( ms * (39/1) ) * (310 / kMatrixHeight));
DrawOneFrame( ms / 65536, yHueDelta32 / 32768, xHueDelta32 / 32768);
if( ms < 5000 ) {
FastLED.setBrightness( scale8( BRIGHTNESS, (ms * 256) / 5000));
} else {
FastLED.setBrightness(BRIGHTNESS);
}
FastLED.show();
}
void DrawOneFrame( uint8_t startHue8, int8_t yHueDelta8, int8_t xHueDelta8)
{
uint8_t lineStartHue = startHue8;
for( uint8_t y = 0; y < kMatrixHeight; y++) {
lineStartHue += yHueDelta8;
uint8_t pixelHue = lineStartHue;
for( uint8_t x = 0; x < kMatrixWidth; x++) {
pixelHue += xHueDelta8;
leds[ XY(x, y)]
= CHSV( pixelHue, 255, 255);
}
}
}
void setup() {
FastLED.addLeds<CHIPSET, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalSMD5050);
FastLED.setBrightness( BRIGHTNESS );
}
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)实验六十:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块项目二十九:使用NeoPixelBrightnessBus库将循环亮度从高到低实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验六十一:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块
项目二十九:使用NeoPixelBrightnessBus库将循环亮度从高到低
*/
// NeoPixelBrightness
// This example will cycle brightness from high to low of
// three pixels colored Red, Green, Blue.
// This demonstrates the use of the NeoPixelBrightnessBus
// with integrated brightness support
//
// There is serial output of the current state so you can
// confirm and follow along
//
#include <NeoPixelBrightnessBus.h> // instead of NeoPixelBus.h
const uint16_t PixelCount = 8; // this example assumes 3 pixels, making it smaller will cause a failure
const uint8_t PixelPin = 6;
// make sure to set this to the correct pin, ignored for Esp8266
#define colorSaturation 255 // saturation of color constants
RgbColor red(colorSaturation, 0, 0);
RgbColor green(0, colorSaturation, 0);
RgbColor blue(0, 0, colorSaturation);
// Make sure to provide the correct color order feature
// for your NeoPixels
NeoPixelBrightnessBus<NeoRgbFeature, Neo800KbpsMethod> strip(PixelCount, PixelPin);
// you loose the original color the lower the dim value used
// here due to quantization
const uint8_t c_MinBrightness = 8;
const uint8_t c_MaxBrightness = 255;
int8_t direction; // current direction of dimming
void setup()
{
Serial.begin(115200);
while (!Serial); // wait for serial attach
Serial.println();
Serial.println("Initializing...");
Serial.flush();
// this resets all the neopixels to an off state
strip.Begin();
strip.Show();
direction = -1; // default to dim first
Serial.println();
Serial.println("Running...");
// set our three original colors
strip.SetPixelColor(0, red);
strip.SetPixelColor(1, green);
strip.SetPixelColor(2, blue);
strip.SetPixelColor(3, red);
strip.SetPixelColor(4, green);
strip.SetPixelColor(5, blue);
strip.SetPixelColor(6, red);
strip.SetPixelColor(7, green);
strip.Show();
}
void loop()
{
uint8_t brightness = strip.GetBrightness();
Serial.println(brightness);
delay(50);
// swap diection of dim when limits are reached
//
if (direction < 0 && brightness <= c_MinBrightness)
{
direction = 1;
}
else if (direction > 0 && brightness >= c_MaxBrightness)
{
direction = -1;
}
// apply dimming
brightness += direction;
strip.SetBrightness(brightness);
// show the results
strip.Show();
}
实验串口返回情况【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)实验六十:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块项目三十:显示具有伽马校正的定时系列颜色渐变实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验六十一:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块
项目三十:显示具有伽马校正的定时系列颜色渐变
*/
// NeoPixelGamma
// This example will display a timed series of color gradiants with gamma correction
// and then without.
// If the last pixel is on, then the colors being shown are color corrected.
// It will show Red grandiant, Green grandiant, Blue grandiant, a White grandiant, and
// then repeat.
//
// This will demonstrate the use of the NeoGamma class
//
//
#include <NeoPixelBus.h>
#include <NeoPixelAnimator.h>
const uint16_t PixelCount = 8; // make sure to set this to the number of pixels in your strip
const uint8_t PixelPin = 6;
// make sure to set this to the correct pin, ignored for Esp8266
NeoPixelBus<NeoGrbFeature, Neo800KbpsMethod> strip(PixelCount, PixelPin);
// for esp8266 omit the pin
//NeoPixelBus<NeoGrbFeature, Neo800KbpsMethod> strip(PixelCount);
// uncomment only one of these to compare memory use or speed
//
// NeoGamma<NeoGammaEquationMethod> colorGamma;
NeoGamma<NeoGammaTableMethod> colorGamma;
void DrawPixels(bool corrected, HslColor startColor, HslColor stopColor)
{
for (uint16_t index = 0; index < strip.PixelCount() - 1; index++)
{
float progress = index / static_cast<float>(strip.PixelCount() - 2);
RgbColor color = HslColor::LinearBlend<NeoHueBlendShortestDistance>(startColor, stopColor, progress);
if (corrected)
{
color = colorGamma.Correct(color);
}
strip.SetPixelColor(index, color);
}
// use the last pixel to indicate if we are showing corrected colors or not
if (corrected)
{
strip.SetPixelColor(strip.PixelCount() - 1, RgbColor(64));
}
else
{
strip.SetPixelColor(strip.PixelCount() - 1, RgbColor(0));
}
strip.Show();
}
void setup()
{
strip.Begin();
strip.Show();
}
void loop()
{
HslColor startColor;
HslColor stopColor;
// red color
startColor = HslColor(0.0f, 1.0f, 0.0f);
stopColor = HslColor(0.0f, 1.0f, 0.5f);
DrawPixels(true, startColor, stopColor);
delay(2000);
DrawPixels(false, startColor, stopColor);
delay(2000);
// green color
startColor = HslColor(0.33f, 1.0f, 0.0f);
stopColor = HslColor(0.33f, 1.0f, 0.5f);
DrawPixels(true, startColor, stopColor);
delay(2000);
DrawPixels(false, startColor, stopColor);
delay(2000);
// blue color
startColor = HslColor(0.66f, 1.0f, 0.0f);
stopColor = HslColor(0.66f, 1.0f, 0.5f);
DrawPixels(true, startColor, stopColor);
delay(2000);
DrawPixels(false, startColor, stopColor);
delay(2000);
// white color
startColor = HslColor(0.0f, 0.0f, 0.0f);
stopColor = HslColor(0.0f, 0.0f, 0.5f);
DrawPixels(true, startColor, stopColor);
delay(2000);
DrawPixels(false, startColor, stopColor);
delay(2000);
}
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)实验六十:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块项目三十一:像素测试:将四个像素显示为红色、绿色、蓝色、白色之间循环实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验六十一:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块
项目三十一:像素测试:将四个像素显示为红色、绿色、蓝色、白色之间循环
*/
// NeoPixelTest
// This example will cycle between showing four pixels as Red, Green, Blue, White
// and then showing those pixels as Black.
//
// Included but commented out are examples of configuring a NeoPixelBus for
// different color order including an extra white channel, different data speeds, and
// for Esp8266 different methods to send the data.
// NOTE: You will need to make sure to pick the one for your platform
//
//
// There is serial output of the current state so you can confirm and follow along
//
#include <NeoPixelBus.h>
const uint16_t PixelCount = 8; // this example assumes 4 pixels, making it smaller will cause a failure
const uint8_t PixelPin = 6;
// make sure to set this to the correct pin, ignored for Esp8266
#define colorSaturation 128
// three element pixels, in different order and speeds
NeoPixelBus<NeoGrbFeature, Neo800KbpsMethod> strip(PixelCount, PixelPin);
//NeoPixelBus<NeoRgbFeature, Neo400KbpsMethod> strip(PixelCount, PixelPin);
// For Esp8266, the Pin is omitted and it uses GPIO3 due to DMA hardware use.
// There are other Esp8266 alternative methods that provide more pin options, but also have
// other side effects.
// for details see wiki linked here https://github.com/Makuna/NeoPixelBus/wiki/ESP8266-NeoMethods
// You can also use one of these for Esp8266,
// each having their own restrictions
//
// These two are the same as above as the DMA method is the default
// NOTE: These will ignore the PIN and use GPI03 pin
//NeoPixelBus<NeoGrbFeature, NeoEsp8266Dma800KbpsMethod> strip(PixelCount, PixelPin);
//NeoPixelBus<NeoRgbFeature, NeoEsp8266Dma400KbpsMethod> strip(PixelCount, PixelPin);
// Uart method is good for the Esp-01 or other pin restricted modules
// for details see wiki linked here https://github.com/Makuna/NeoPixelBus/wiki/ESP8266-NeoMethods
// NOTE: These will ignore the PIN and use GPI02 pin
//NeoPixelBus<NeoGrbFeature, NeoEsp8266Uart1800KbpsMethod> strip(PixelCount, PixelPin);
//NeoPixelBus<NeoRgbFeature, NeoEsp8266Uart1400KbpsMethod> strip(PixelCount, PixelPin);
// The bitbang method is really only good if you are not using WiFi features of the ESP
// It works with all but pin 16
//NeoPixelBus<NeoGrbFeature, NeoEsp8266BitBang800KbpsMethod> strip(PixelCount, PixelPin);
//NeoPixelBus<NeoRgbFeature, NeoEsp8266BitBang400KbpsMethod> strip(PixelCount, PixelPin);
// four element pixels, RGBW
//NeoPixelBus<NeoRgbwFeature, Neo800KbpsMethod> strip(PixelCount, PixelPin);
RgbColor red(colorSaturation, 0, 0);
RgbColor green(0, colorSaturation, 0);
RgbColor blue(0, 0, colorSaturation);
RgbColor white(colorSaturation);
RgbColor black(0);
HslColor hslRed(red);
HslColor hslGreen(green);
HslColor hslBlue(blue);
HslColor hslWhite(white);
HslColor hslBlack(black);
void setup()
{
Serial.begin(115200);
while (!Serial); // wait for serial attach
Serial.println();
Serial.println("Initializing...");
Serial.flush();
// this resets all the neopixels to an off state
strip.Begin();
strip.Show();
Serial.println();
Serial.println("Running...");
}
void loop()
{
delay(5000);
Serial.println("Colors R, G, B, W...");
// set the colors,
// if they don't match in order, you need to use NeoGrbFeature feature
strip.SetPixelColor(0, red);
strip.SetPixelColor(1, green);
strip.SetPixelColor(2, blue);
strip.SetPixelColor(3, white);
strip.SetPixelColor(4, red);
strip.SetPixelColor(5, green);
strip.SetPixelColor(6, blue);
strip.SetPixelColor(7, white);
// the following line demonstrates rgbw color support
// if the NeoPixels are rgbw types the following line will compile
// if the NeoPixels are anything else, the following line will give an error
//strip.SetPixelColor(3, RgbwColor(colorSaturation));
strip.Show();
delay(2000);
Serial.println("Off ...");
// turn off the pixels
strip.SetPixelColor(0, black);
strip.SetPixelColor(1, black);
strip.SetPixelColor(2, black);
strip.SetPixelColor(3, black);
strip.Show();
delay(2000);
Serial.println("HSL Colors R, G, B, W...");
// set the colors,
// if they don't match in order, you may need to use NeoGrbFeature feature
strip.SetPixelColor(0, hslRed);
strip.SetPixelColor(1, hslGreen);
strip.SetPixelColor(2, hslBlue);
strip.SetPixelColor(3, hslWhite);
strip.Show();
delay(2000);
Serial.println("Off again...");
// turn off the pixels
strip.SetPixelColor(0, hslBlack);
strip.SetPixelColor(1, hslBlack);
strip.SetPixelColor(2, hslBlack);
strip.SetPixelColor(3, hslBlack);
strip.Show();
}
实验串口返回情况【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)实验六十:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块项目三十二:为每个像素随机选择一种新颜色并设置动画实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验六十一:直条8位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块
项目三十二:为每个像素随机选择一种新颜色并设置动画
*/
// NeoPixelAnimation
// This example will randomly pick a new color for each pixel and animate
// the current color to the new color over a random small amount of time, using
// a randomly selected animation curve.
// It will repeat this process once all pixels have finished the animation
//
// This will demonstrate the use of the NeoPixelAnimator extended time feature.
// This feature allows for different time scales to be used, allowing slow extended
// animations to be created.
//
// This will demonstrate the use of the NeoEase animation ease methods; that provide
// simulated acceleration to the animations.
//
// It also includes platform specific code for Esp8266 that demonstrates easy
// animation state and function definition inline.
This is not available on AVR
// Arduinos; but the AVR compatible code is also included for comparison.
//
// The example includes some serial output that you can follow along with as it
// does the animation.
//
#include <NeoPixelBus.h>
#include <NeoPixelAnimator.h>
const uint16_t PixelCount = 8; // make sure to set this to the number of pixels in your strip
const uint8_t PixelPin = 6;
// make sure to set this to the correct pin, ignored for Esp8266
NeoPixelBus<NeoGrbFeature, Neo800KbpsMethod> strip(PixelCount, PixelPin);
// For Esp8266, the Pin is omitted and it uses GPIO3 due to DMA hardware use.
// There are other Esp8266 alternative methods that provide more pin options, but also have
// other side effects.
// for details see wiki linked here https://github.com/Makuna/NeoPixelBus/wiki/ESP8266-NeoMethods
// NeoPixel animation time management object
NeoPixelAnimator animations(PixelCount, NEO_CENTISECONDS);
// create with enough animations to have one per pixel, depending on the animation
// effect, you may need more or less.
//
// since the normal animation time range is only about 65 seconds, by passing timescale value
// to the NeoPixelAnimator constructor we can increase the time range, but we also increase
// the time between the animation updates.
// NEO_CENTISECONDS will update the animations every 100th of a second rather than the default
// of a 1000th of a second, but the time range will now extend from about 65 seconds to about
// 10.9 minutes.
But you must remember that the values passed to StartAnimations are now
// in centiseconds.
//
// Possible values from 1 to 32768, and there some helpful constants defined as...
// NEO_MILLISECONDS
1
// ~65 seconds max duration, ms updates
// NEO_CENTISECONDS
10
// ~10.9 minutes max duration, centisecond updates
// NEO_DECISECONDS
100
// ~1.8 hours max duration, decisecond updates
// NEO_SECONDS
1000
// ~18.2 hours max duration, second updates
// NEO_DECASECONDS
10000
// ~7.5 days, 10 second updates
//
#if defined(NEOPIXEBUS_NO_STL)
// for AVR, you need to manage the state due to lack of STL/compiler support
// for Esp8266 you can define the function using a lambda and state is created for you
// see below for an example
struct MyAnimationState
{
RgbColor StartingColor;
// the color the animation starts at
RgbColor EndingColor; // the color the animation will end at
AnimEaseFunction Easeing; // the acceleration curve it will use
};
MyAnimationState animationState[PixelCount];
// one entry per pixel to match the animation timing manager
void AnimUpdate(const AnimationParam& param)
{
// first apply an easing (curve) to the animation
// this simulates acceleration to the effect
float progress = animationState[param.index].Easeing(param.progress);
// this gets called for each animation on every time step
// progress will start at 0.0 and end at 1.0
// we use the blend function on the RgbColor to mix
// color based on the progress given to us in the animation
RgbColor updatedColor = RgbColor::LinearBlend(
animationState[param.index].StartingColor,
animationState[param.index].EndingColor,
progress);
// apply the color to the strip
strip.SetPixelColor(param.index, updatedColor);
}
#endif
void SetRandomSeed()
{
uint32_t seed;
// random works best with a seed that can use 31 bits
// analogRead on a unconnected pin tends toward less than four bits
seed = analogRead(0);
delay(1);
for (int shifts = 3; shifts < 31; shifts += 3)
{
seed ^= analogRead(0) << shifts;
delay(1);
}
// Serial.println(seed);
randomSeed(seed);
}
void setup()
{
Serial.begin(115200);
while (!Serial); // wait for serial attach
strip.Begin();
strip.Show();
SetRandomSeed();
// just pick some colors
for (uint16_t pixel = 0; pixel < PixelCount; pixel++)
{
RgbColor color = RgbColor(random(255), random(255), random(255));
strip.SetPixelColor(pixel, color);
}
Serial.println();
Serial.println("Running...");
}
void SetupAnimationSet()
{
// setup some animations
for (uint16_t pixel = 0; pixel < PixelCount; pixel++)
{
const uint8_t peak = 128;
// pick a random duration of the animation for this pixel
// since values are centiseconds, the range is 1 - 4 seconds
uint16_t time = random(100, 400);
// each animation starts with the color that was present
RgbColor originalColor = strip.GetPixelColor(pixel);
// and ends with a random color
RgbColor targetColor = RgbColor(random(peak), random(peak), random(peak));
// with the random ease function
AnimEaseFunction easing;
switch (random(3))
{
case 0:
easing = NeoEase::CubicIn;
break;
case 1:
easing = NeoEase::CubicOut;
break;
case 2:
easing = NeoEase::QuadraticInOut;
break;
}
#if defined(NEOPIXEBUS_NO_STL)
// each animation starts with the color that was present
animationState[pixel].StartingColor = originalColor;
// and ends with a random color
animationState[pixel].EndingColor = targetColor;
// using the specific curve
animationState[pixel].Easeing = easing;
// now use the animation state we just calculated and start the animation
// which will continue to run and call the update function until it completes
animations.StartAnimation(pixel, time, AnimUpdate);
#else
// we must supply a function that will define the animation, in this example
// we are using "lambda expression" to define the function inline, which gives
// us an easy way to "capture" the originalColor and targetColor for the call back.
//
// this function will get called back when ever the animation needs to change
// the state of the pixel, it will provide a animation progress value
// from 0.0 (start of animation) to 1.0 (end of animation)
//
// we use this progress value to define how we want to animate in this case
// we call RgbColor::LinearBlend which will return a color blended between
// the values given, by the amount passed, hich is also a float value from 0.0-1.0.
// then we set the color.
//
// There is no need for the MyAnimationState struct as the compiler takes care
// of those details for us
AnimUpdateCallback animUpdate = [=](const AnimationParam& param)
{
// progress will start at 0.0 and end at 1.0
// we convert to the curve we want
float progress = easing(param.progress);
// use the curve value to apply to the animation
RgbColor updatedColor = RgbColor::LinearBlend(originalColor, targetColor, progress);
strip.SetPixelColor(pixel, updatedColor);
};
// now use the animation properties we just calculated and start the animation
// which will continue to run and call the update function until it completes
animations.StartAnimation(pixel, time, animUpdate);
#endif
}
}
void loop()
{
if (animations.IsAnimating())
{
// the normal loop just needs these two to run the active animations
animations.UpdateAnimations();
strip.Show();
}
else
{
Serial.println();
Serial.println("Setup Next Set...");
// example function that sets up some animations
SetupAnimationSet();
}
}
实验串口返回情况Arduino实验场景图}
37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手试试多做实验,不管成功与否,都会记录下来——小小的进步或是搞不掂的问题,希望能够抛砖引玉。【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)实验一百九十九:WS2812B全彩RGB像素屏 8x32点阵LED显示屏 可编程硬屏模块知识点:WS2812B主要特点智能反接保护,电源反接不会损坏IC。IC控制电路与LED点光源公用一个电源。控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。内置上电复位和掉电复位电路。每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示,扫描频率不低于400Hz/s。串行级联接口,能通过一根信号线完成数据的接收与解码。任意两点传传输距离在不超过5米时无需增加任何电路。当刷新速率30帧/秒时,级联数不小于1024点。数据发送速度可达800Kbps。光的颜色高度一致,性价比高。主要应用领域LED全彩发光字灯串,LED全彩模组, LED全彩软灯条硬灯条,LED护栏管。LED点光源,LED像素屏,LED异形屏,各种电子产品,电器设备跑马灯。WS2812B灯屏电原理参考图实验涉及到的几个WS2812B相关库安装FastLED库,工具—管理库—搜索FastLED—安装安装NeoPixel库,工具—管理库—搜索NeoPixel—安装安装Adafruit_NeoPixel库,下载https://github.com/adafruit/Adafruit_NeoPixel【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)实验二百一十四:WS2812B全彩RGB像素屏 8x32点阵LED显示屏 硬屏模块项目程序十一:骄傲2015动画,不断变化的彩虹Arduino实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验二百一十四:WS2812B全彩RGB像素屏 8x32点阵LED显示屏 硬屏模块
项目程序十一:骄傲2015动画,不断变化的彩虹
*/
#include "FastLED.h"
// Pride2015
// Animated, ever-changing rainbows.
// by Mark Kriegsman
#if FASTLED_VERSION < 3001000
#error "Requires FastLED 3.1 or later; check github for latest code."
#endif
#define DATA_PIN
6
//#define CLK_PIN
4
#define LED_TYPE
WS2811
#define COLOR_ORDER GRB
#define NUM_LEDS
256
#define BRIGHTNESS
22
CRGB leds[NUM_LEDS];
void setup() {
delay(1000); // 3 second delay for recovery
// tell FastLED about the LED strip configuration
FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS)
.setCorrection(TypicalLEDStrip)
.setDither(BRIGHTNESS < 255);
// set master brightness control
FastLED.setBrightness(BRIGHTNESS);
}
void loop()
{
pride();
FastLED.show();
}
// This function draws rainbows with an ever-changing,
// widely-varying set of parameters.
void pride()
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88( 341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 1, 3000);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis ;
sLastMillis
= ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88( 400, 5,9);
uint16_t brightnesstheta16 = sPseudotime;
for( uint16_t i = 0 ; i < NUM_LEDS; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
brightnesstheta16
+= brightnessthetainc16;
uint16_t b16 = sin16( brightnesstheta16
) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
CRGB newcolor = CHSV( hue8, sat8, bri8);
uint16_t pixelnumber = i;
pixelnumber = (NUM_LEDS-1) - pixelnumber;
nblend( leds[pixelnumber], newcolor, 64);
}
}
Arduino实验场景图【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)实验二百一十四:WS2812B全彩RGB像素屏 8x32点阵LED显示屏 硬屏模块项目程序十二:TwinkleFOX-淡入淡出的闪烁“假日”灯Arduino实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验二百一十四:WS2812B全彩RGB像素屏 8x32点阵LED显示屏 硬屏模块
项目程序十二:TwinkleFOX-淡入淡出的闪烁“假日”灯
*/
#include "FastLED.h"
#define NUM_LEDS
256
#define LED_TYPE
WS2811
#define COLOR_ORDER
GRB
#define DATA_PIN
6
//#define CLK_PIN
4
#define VOLTS
12
#define MAX_MA
4000
//
TwinkleFOX: Twinkling 'holiday' lights that fade in and out.
//
Colors are chosen from a palette; a few palettes are provided.
//
//
This December 2015 implementation improves on the December 2014 version
//
in several ways:
//
- smoother fading, compatible with any colors and any palettes
//
- easier control of twinkle speed and twinkle density
//
- supports an optional 'background color'
//
- takes even less RAM: zero RAM overhead per pixel
//
- illustrates a couple of interesting techniques (uh oh...)
//
//
The idea behind this (new) implementation is that there's one
//
basic, repeating pattern that each pixel follows like a waveform:
//
The brightness rises from 0..255 and then falls back down to 0.
//
The brightness at any given point in time can be determined as
//
as a function of time, for example:
//
brightness = sine( time ); // a sine wave of brightness over time
//
//
So the way this implementation works is that every pixel follows
//
the exact same wave function over time.
In this particular case,
//
I chose a sawtooth triangle wave (triwave8) rather than a sine wave,
//
but the idea is the same: brightness = triwave8( time ).
//
//
Of course, if all the pixels used the exact same wave form, and
//
if they all used the exact same 'clock' for their 'time base', all
//
the pixels would brighten and dim at once -- which does not look
//
like twinkling at all.
//
//
So to achieve random-looking twinkling, each pixel is given a
//
slightly different 'clock' signal.
Some of the clocks run faster,
//
some run slower, and each 'clock' also has a random offset from zero.
//
The net result is that the 'clocks' for all the pixels are always out
//
of sync from each other, producing a nice random distribution
//
of twinkles.
//
//
The 'clock speed adjustment' and 'time offset' for each pixel
//
are generated randomly.
One (normal) approach to implementing that
//
would be to randomly generate the clock parameters for each pixel
//
at startup, and store them in some arrays.
However, that consumes
//
a great deal of precious RAM, and it turns out to be totally
//
unnessary!
If the random number generate is 'seeded' with the
//
same starting value every time, it will generate the same sequence
//
of values every time.
So the clock adjustment parameters for each
//
pixel are 'stored' in a pseudo-random number generator!
The PRNG
//
is reset, and then the first numbers out of it are the clock
//
adjustment parameters for the first pixel, the second numbers out
//
of it are the parameters for the second pixel, and so on.
//
In this way, we can 'store' a stable sequence of thousands of
//
random clock adjustment parameters in literally two bytes of RAM.
//
//
There's a little bit of fixed-point math involved in applying the
//
clock speed adjustments, which are expressed in eighths.
Each pixel's
//
clock speed ranges from 8/8ths of the system clock (i.e. 1x) to
//
23/8ths of the system clock (i.e. nearly 3x).
//
//
On a basic Arduino Uno or Leonardo, this code can twinkle 300+ pixels
//
smoothly at over 50 updates per seond.
//
//
-Mark Kriegsman, December 2015
CRGBArray<NUM_LEDS> leds;
// Overall twinkle speed.
// 0 (VERY slow) to 8 (VERY fast).
// 4, 5, and 6 are recommended, default is 4.
#define TWINKLE_SPEED 4
// Overall twinkle density.
// 0 (NONE lit) to 8 (ALL lit at once).
// Default is 5.
#define TWINKLE_DENSITY 5
// How often to change color palettes.
#define SECONDS_PER_PALETTE
30
// Also: toward the bottom of the file is an array
// called "ActivePaletteList" which controls which color
// palettes are used; you can add or remove color palettes
// from there freely.
// Background color for 'unlit' pixels
// Can be set to CRGB::Black if desired.
CRGB gBackgroundColor = CRGB::Black;
// Example of dim incandescent fairy light background color
// CRGB gBackgroundColor = CRGB(CRGB::FairyLight).nscale8_video(16);
// If AUTO_SELECT_BACKGROUND_COLOR is set to 1,
// then for any palette where the first two entries
// are the same, a dimmed version of that color will
// automatically be used as the background color.
#define AUTO_SELECT_BACKGROUND_COLOR 0
// If COOL_LIKE_INCANDESCENT is set to 1, colors will
// fade out slighted 'reddened', similar to how
// incandescent bulbs change color as they get dim down.
#define COOL_LIKE_INCANDESCENT 1
CRGBPalette16 gCurrentPalette;
CRGBPalette16 gTargetPalette;
void setup() {
delay( 1000 ); //safety startup delay
FastLED.setMaxPowerInVoltsAndMilliamps( VOLTS, MAX_MA);
FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS)
.setCorrection(TypicalLEDStrip);
FastLED.setBrightness(23);
chooseNextColorPalette(gTargetPalette);
}
void loop()
{
EVERY_N_SECONDS( SECONDS_PER_PALETTE ) {
chooseNextColorPalette( gTargetPalette );
}
EVERY_N_MILLISECONDS( 10 ) {
nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 12);
}
drawTwinkles( leds);
FastLED.show();
}
//
This function loops over each pixel, calculates the
//
adjusted 'clock' that this pixel should use, and calls
//
"CalculateOneTwinkle" on each pixel.
It then displays
//
either the twinkle color of the background color,
//
whichever is brighter.
void drawTwinkles( CRGBSet& L)
{
// "PRNG16" is the pseudorandom number generator
// It MUST be reset to the same starting value each time
// this function is called, so that the sequence of 'random'
// numbers that it generates is (paradoxically) stable.
uint16_t PRNG16 = 11337;
uint32_t clock32 = millis();
// Set up the background color, "bg".
// if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
// the current palette are identical, then a deeply faded version of
// that color is used for the background color
CRGB bg;
if ( (AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(gCurrentPalette[0] == gCurrentPalette[1] )) {
bg = gCurrentPalette[0];
uint8_t bglight = bg.getAverageLight();
if ( bglight > 64) {
bg.nscale8_video( 16); // very bright, so scale to 1/16th
} else if ( bglight > 16) {
bg.nscale8_video( 64); // not that bright, so scale to 1/4th
} else {
bg.nscale8_video( 86); // dim, scale to 1/3rd.
}
} else {
bg = gBackgroundColor; // just use the explicitly defined background color
}
uint8_t backgroundBrightness = bg.getAverageLight();
for ( CRGB& pixel : L) {
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
uint16_t myclockoffset16 = PRNG16; // use that number as clock offset
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
// use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
uint8_t myspeedmultiplierQ5_3 =
((((PRNG16 & 0xFF) >> 4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
uint8_t
myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel
// We now have the adjusted 'clock' for this pixel, now we call
// the function that computes what color the pixel should be based
// on the "brightness = f( time )" idea.
CRGB c = computeOneTwinkle( myclock30, myunique8);
uint8_t cbright = c.getAverageLight();
int16_t deltabright = cbright - backgroundBrightness;
if ( deltabright >= 32
(!bg)) {
// If the new pixel is significantly brighter than the background color,
// use the new color.
pixel = c;
} else if ( deltabright > 0 ) {
// If the new pixel is just slightly brighter than the background color,
// mix a blend of the new color and the background color
pixel = blend( bg, c, deltabright * 8);
} else {
// if the new pixel is not at all brighter than the background color,
// just use the background color.
pixel = bg;
}
}
}
//
This function takes a time in pseudo-milliseconds,
//
figures out brightness = f( time ), and also hue = f( time )
//
The 'low digits' of the millisecond time are used as
//
input to the brightness wave function.
//
The 'high digits' are used to select a color, so that the color
//
does not change over the course of the fade-in, fade-out
//
of one cycle of the brightness wave function.
//
The 'high digits' are also used to determine whether this pixel
//
should light at all during this cycle, based on the TWINKLE_DENSITY.
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt)
{
uint16_t ticks = ms >> (8 - TWINKLE_SPEED);
uint8_t fastcycle8 = ticks;
uint16_t slowcycle16 = (ticks >> 8) + salt;
slowcycle16 += sin8( slowcycle16);
slowcycle16 =
(slowcycle16 * 2053) + 1384;
uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);
uint8_t bright = 0;
if ( ((slowcycle8 & 0x0E) / 2) < TWINKLE_DENSITY) {
bright = attackDecayWave8( fastcycle8);
}
uint8_t hue = slowcycle8 - salt;
CRGB c;
if ( bright > 0) {
c = ColorFromPalette( gCurrentPalette, hue, bright, NOBLEND);
if ( COOL_LIKE_INCANDESCENT == 1 ) {
coolLikeIncandescent( c, fastcycle8);
}
} else {
c = CRGB::Black;
}
return c;
}
// This function is like 'triwave8', which produces a
// symmetrical up-and-down triangle sawtooth waveform, except that this
// function produces a triangle wave with a faster attack and a slower decay:
//
//
/ \
//
/
\
//
/
\
//
/
\
//
uint8_t attackDecayWave8( uint8_t i)
{
if ( i < 86) {
return i * 3;
} else {
i -= 86;
return 255 - (i + (i / 2));
}
}
// This function takes a pixel, and if its in the 'fading down'
// part of the cycle, it adjusts the color a little bit like the
// way that incandescent bulbs fade toward 'red' as they dim.
void coolLikeIncandescent( CRGB& c, uint8_t phase)
{
if ( phase < 128) return;
uint8_t cooling = (phase - 128) >> 4;
c.g = qsub8( c.g, cooling);
c.b = qsub8( c.b, cooling * 2);
}
// A mostly red palette with green accents and white trim.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedGreenWhite_p FL_PROGMEM =
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
CRGB::Green, CRGB::Green, CRGB::Green, CRGB::Green
};
// A mostly (dark) green palette with red berries.
#define Holly_Green 0x00580c
#define Holly_Red
0xB00402
const TProgmemRGBPalette16 Holly_p FL_PROGMEM =
{ Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Red
};
// A red and white striped palette
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
{ CRGB::Red,
CRGB::Red,
CRGB::Red,
CRGB::Red,
CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray,
CRGB::Red,
CRGB::Red,
CRGB::Red,
CRGB::Red,
CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray
};
// A mostly blue palette with white accents.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
{ CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Gray, CRGB::Gray, CRGB::Gray
};
// A pure "fairy light" palette with some brightness variations
#define HALFFAIRY ((CRGB::FairyLight & 0xFEFEFE) / 2)
#define QUARTERFAIRY ((CRGB::FairyLight & 0xFCFCFC) / 4)
const TProgmemRGBPalette16 FairyLight_p FL_PROGMEM =
{ CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight,
HALFFAIRY,
HALFFAIRY,
CRGB::FairyLight, CRGB::FairyLight,
QUARTERFAIRY,
QUARTERFAIRY,
CRGB::FairyLight, CRGB::FairyLight,
CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight
};
// A palette of soft snowflakes with the occasional bright one
const TProgmemRGBPalette16 Snow_p FL_PROGMEM =
{ 0x304048, 0x304048, 0x304048, 0x304048,
0x304048, 0x304048, 0x304048, 0x304048,
0x304048, 0x304048, 0x304048, 0x304048,
0x304048, 0x304048, 0x304048, 0xE0F0FF
};
// A palette reminiscent of large 'old-school' C9-size tree lights
// in the five classic colors: red, orange, green, blue, and white.
#define C9_Red
0xB80400
#define C9_Orange 0x902C02
#define C9_Green
0x046002
#define C9_Blue
0x070758
#define C9_White
0x606820
const TProgmemRGBPalette16 RetroC9_p FL_PROGMEM =
{ C9_Red,
C9_Orange, C9_Red,
C9_Orange,
C9_Orange, C9_Red,
C9_Orange, C9_Red,
C9_Green,
C9_Green,
C9_Green,
C9_Green,
C9_Blue,
C9_Blue,
C9_Blue,
C9_White
};
// A cold, icy pale blue palette
#define Ice_Blue1 0x0C1040
#define Ice_Blue2 0x182080
#define Ice_Blue3 0x5080C0
const TProgmemRGBPalette16 Ice_p FL_PROGMEM =
{
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
Ice_Blue2, Ice_Blue2, Ice_Blue2, Ice_Blue3
};
// Add or remove palette names from this list to control which color
// palettes are used, and in what order.
const TProgmemRGBPalette16* ActivePaletteList[] = {
&RetroC9_p,
&BlueWhite_p,
&RainbowColors_p,
&FairyLight_p,
&RedGreenWhite_p,
&PartyColors_p,
&RedWhite_p,
&Snow_p,
&Holly_p,
&Ice_p
};
// Advance to the next color palette in the list (above).
void chooseNextColorPalette( CRGBPalette16& pal)
{
const uint8_t numberOfPalettes = sizeof(ActivePaletteList) / sizeof(ActivePaletteList[0]);
static uint8_t whichPalette = -1;
whichPalette = addmod8( whichPalette, 1, numberOfPalettes);
pal = *(ActivePaletteList[whichPalette]);
}
Arduino实验场景图【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)实验二百一十四:WS2812B全彩RGB像素屏 8x32点阵LED显示屏 硬屏模块项目程序十三:随机不同像素布局的xy矩阵Arduino实验开源代码/*
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验二百一十四:WS2812B全彩RGB像素屏 8x32点阵LED显示屏 硬屏模块
项目程序十三:随机不同像素布局的xy矩阵
*/
#include <FastLED.h>
// Params for width and height
const uint8_t kMatrixWidth = 8;
const uint8_t kMatrixHeight = 32;
#define NUM_LEDS (kMatrixWidth * kMatrixHeight)
// Param for different pixel layouts
#define kMatrixSerpentineLayout
true
// led array
CRGB leds[kMatrixWidth * kMatrixHeight];
// x,y, & time values
uint32_t x,y,v_time,hue_time,hxy;
// Play with the values of the variables below and see what kinds of effects they
// have!
More octaves will make things slower.
// how many octaves to use for the brightness and hue functions
uint8_t octaves=1;
uint8_t hue_octaves=3;
// the 'distance' between points on the x and y axis
int xscale=57771;
int yscale=57771;
// the 'distance' between x/y points for the hue noise
int hue_scale=1;
// how fast we move through time & hue noise
int time_speed=1111;
int hue_speed=31;
// adjust these values to move along the x or y axis between frames
int x_speed=331;
int y_speed=1111;
void loop() {
// fill the led array 2/16-bit noise values
fill_2dnoise16(leds, kMatrixWidth, kMatrixHeight, kMatrixSerpentineLayout,
octaves,x,xscale,y,yscale,v_time,
hue_octaves,hxy,hue_scale,hxy,hue_scale,hue_time, false);
FastLED.show();
// adjust the intra-frame time values
x += x_speed;
y += y_speed;
v_time += time_speed;
hue_time += hue_speed;
// delay(50);
}
void setup() {
// initialize the x/y and time values
random16_set_seed(8934);
random16_add_entropy(analogRead(3));
Serial.begin(57600);
Serial.println("resetting!");
delay(3000);
FastLED.addLeds<WS2811,6,GRB>(leds,NUM_LEDS);
FastLED.setBrightness(36);
hxy = (uint32_t)((uint32_t)random16() << 16) + (uint32_t)random16();
x = (uint32_t)((uint32_t)random16() << 16) + (uint32_t)random16();
y = (uint32_t)((uint32_t)random16() << 16) + (uint32_t)random16();
v_time = (uint32_t)((uint32_t)random16() << 16) + (uint32_t)random16();
hue_time = (uint32_t)((uint32_t)random16() << 16) + (uint32_t)random16();
}
Arduino实验场景图}
将RGB转换为HSV可以使用下列代码实现:// 定义RGB颜色 int R=100; int G=100; int B=100; // 计算最大值和最小值 int max = max(R,max(G,B)); int min = min(R,min(G,B)); // 计算HSV的H分量(色相) float H; if (max == min) H = 0; else if (max == R) H = 60 * (G - B) / (max - min) + 0; else if (max == G) H = 60 * (B - R) / (max - min) +
}

我要回帖

更多关于 arduino控制led灯的亮度 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信