盖子环隙面积会不会因高度孔隙率增大堆积密度怎么变化而孔隙率增大堆积密度怎么变化?

机械故障诊断与维修课程论文工程机械故障诊断方法综述谢祺机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。【关键字】:机械设备诊断技术发展趋势引言随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。机械故障诊断技术的历史早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测[2]与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用。英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障 机械故障诊断与维修课程论文数据中心的作用。目前英国在摩擦磨损、汽车、飞机发动机监测和诊断方面仍具有领先的地位。欧洲一些国家的诊断技术发展各具特色。如瑞典SPM公司的轴承监测技术,AGEMA公司的红外热像技术;挪威的船舶诊断技术;丹麦的B&K公司的振动、噪声监测技术等都是各有千秋。日本在钢铁、化工等民用工业中诊断技术占有优势。东京大学、东京工业大学、京都大学、早稻田大学等高等学校着重基础性理论研究;而机械技术研究所、船舶技术研究所等国立研究机构重点研究机械基础件的诊断研究;三菱重工等民办企业在旋转机械故障诊断方面开展了系统的工作,所研制[3]的“机械保健系统”在汽轮发电机组故障监测和诊断方面已经起到了有效的作用。我国诊断技术的发展始于70年代末,而真正的起步应该从1983年南京首届设备诊断技术专题座谈会开始。虽起步较晚,但经过近几年的努力,加上政府有关部门多次组织外国诊断技术专家来华讲学,已基本跟上了国外在此方面的步伐,在某些理论研究方面已和国外不相上下。目前我国在一些特定设备的诊断研究方面很有特色,形成了一批自己的监测诊断产品。全国各行业都很重视在关键设备上装备故障诊断系统,特别是智能化的故障诊断专家系统,在电力系统、石化系统、冶金系统、以及高科技产业中的核动力电站、航空部门和载人航天工程等。工作比较集中的是大型旋转机械故障诊断系统,已经开发了20种以上的机组故障诊断系统和十余种可用来做现场故障诊断的便携式现场数据采集器。透平发电机、压缩机的诊断技术已列入国家重点攻关项目并受到高度重视;而西安交通大学的“大型选转机械计算机状态监测与故障诊断系统”,哈尔滨工业大学的“机组振动微机监测和故障诊断系统”。东北大学设备诊断工程中心经过多年研究,研制成功了“轧钢机状态监测诊断系统”,“风机工作状态监测诊断系统”,均取得了可喜的成果
设备故障诊断技术的现状2.1
故障诊断的基本过程及内容机械故障检测诊断的基本过程(见图1)包含两方面内容:(1)对设备运行状态进行检测;(2)发现异常情况后对设备的故障进行分析、诊断。其发展也经历了从简易诊断到精密诊断,从一般诊断到智能诊断,从单机诊断到网络诊断的过程,发展速度愈来愈快。图1 机械故障诊断基本过程2.2
主要技术方法现状根据系统采用的特征描述和决策方法,故障检测诊断的方法概括起来分为:基于系统数学模型的故障诊断方法和基于非模型的故障诊断方法两大类。2.2.1
基于系统数学模型的故障诊断方法基于模型的故障检测诊断技术是通过构造观测器估计出系统输出,然后将它与输出的测量值比较,从中取得故障信息。该方法能与控制系统紧密结合,是监控、容错控制、系统修复和重构的前提;是以现代控制理论和现代优化方法为指导,以系统的数学模型为基础,利用观测器(组)、等价空间方程、滤波器、参数模型估计和辨识等方法产生残差,然后基于某种准则或阈值对该残差进行评价和决策。机械故障诊断与维修课程论文 2.2.2
基于非模型的故障诊断方法(1)基于可测信号处理的故障诊断方法 系统的输出在幅值、相位、频率及相关性上与故障源存在着某种关系,利用这种关系可确定系统的故障。常用的方法有谱分析、相关分析、功率谱分析和概率密度法。(2)基于故障诊断专家系统的诊断方法 专家系统是近年来故障诊断领域最显著的成就之一,内容包括诊断知识的表达、诊断推理方法、不确定性推理以及诊断知识的获取等。随着计算机科学和人工智能的发展,基于专家系统的故障诊断方法克服了基于模型的故障诊断方法对模型的过分依赖性,成为故障检测的有效方法。(3)故障模式识别的故障诊断方法 这是一种静态故障诊断方法,它以模式识别技术为基础,其关键是故障模式特征量的选取和提取。该方法分为离线分析和在线分析2 个阶段。通过离线分析来确定表达系统故障状态的特征向量集和以该特征向量集所描述的故障模式向量,由此形成故障的基准模式集,并确定区分识别这些故障模式向量的判别函数,然后通过在线诊断实时提取故障的特征向量,由判别函数对故障进行分离定位。(4)基于故障树的故障诊断方法 故障树是表示系统或设备特定事件或不希望事件与它的各子系统或各部件故障事件之间的逻辑结构图,通过结构图对系统故障形成的原因做出总体至部分按树状逐渐地详细划分。这是一种图形演绎法,把系统故障与导致该故障的各种因素形象地绘成故障图表,较直观地反映故障、元部件、系统及因素、原因之间的相互关系,也能定量计算故障程度、概率和原因等。(5)基于模糊数学的故障诊断方法 根据模糊集合论征兆空间与故障状态空间的某种映射关系,由征兆来诊断故障。由于模糊集合论尚未成熟,通常只能凭经验和大量试验来确定。另外因系统本身不确定的和模糊的信息,以及要对每一个征兆和特征参数确定其上下限和合适的隶属度函数,而使其应用有局限性。但随着模糊集合论的完善,相信该方法有较光明的前景。(6)基于人工神经网络的故障诊断方法 是20世纪80 年代末90 年代初才真正具有实用性的一种故障诊断方法。由于神经网络具有原则上容错、结构拓扑鲁棒、联想、推测、记忆、自适应、自学习、并行和处理复杂模式的功能,使其在工程实际存在着大量的多故障、多过程、突发性故障、庞大复杂机器和系统的监测及诊断中发挥较大作用。设备检测诊断技术的发展趋势传感器的精密化、多维化;诊断理论、诊断模型的多元化;检测诊断技术趋于自动化、数字化、智能化和综合化;应用软件规范化;硬件专业化、标准化;诊断仪表与装置趋向工程网络系统发展。具体表现在以下几方面:(1)研究和改进传感器与监测仪器选取合适的参量以提高诊断的准确度 与当代最新传感技术融合,研究开发新型传感器和监测仪器,提高监测技术水平;选择最有效的参量是提高诊断准确性的前提,高效多功能仪器对诊断设备的几何量、物理量快速准确的检测与识别是研究故障诊断的基础工作。(2)与最新信号处理方法相融合,开展基于小波分析的故障诊断技术研究 小波分析是一种全新的信号-尺度分析方法,其分析基函数是一系列尺度可变的简谐函数,具有良好的时-频定性特性以及对信号的自适应能力。机械设备故障诊断中由于设备零件结构不同,产生的信号中含有大量的非平稳成分,利用小波分析可把不同频率信号分解到不同频道的分解序列,从而为故障特征的提取而提供理论依据,由于它具有时域和频域局部化分析功能和可变分辨率的特点,使之在分析瞬变信号时比傅立叶分析更具优越性。(3)与非线性原理和方法及多元传感技术的融合 现代化大生产要求对设备进行全方位、多角 机械故障诊断与维修课程论文度的监测与维护,以便对设备的运行状态有整体的、全方面的了解;在进行设备故障检测诊断时,可采用多个传感器同时对设备的各个位置进行监测,然后按照一定的方法对这些信息进行处理。机械设备在发生故障时,又往往表现为非线性特征,随着混沌与分型几何方法的日趋完善,这类问题也必将得到进一步解决。(4)与现代智能方法的融合 现代智能技术包括专家系统、模糊逻辑、神经网络、进化计算等。现代智能方法在设备故障诊断技术中已得到了广泛的应用,随着智能科技不断发展,设备状态的智能监测和故障诊断将是故障诊断技术的最终目标。(5)远程化、网络化 设备故障诊断系统是针对一台或同类型的某几台设备开发的专用系统,使用效率低,故障诊断知识、技术与信息不易共享,导致其开发和维护费用过高;工程实际中诊断规则的收集不够全面,收集也困难,造成故障诊断系统中的诊断规则普遍很少,系统诊断能力低;当系统出现严重或新的故障时,无法快速、经济地利用各方技术力量解决问题。随着网络技术的发展,实现多专家与多系统的共同诊断,一种有效的解决途径就是建立基于网络的远程故障诊断与监测系统。网络化的远程设备故障诊断系统中储存了多种设备的故障诊断知识和经验,可响应不同监测现场用户的使用要求,不同的监测现场可以与同一个诊断中心建立联系 结束语随着微电子、计算机、智能技术和网络技术的发展,机械设备故障检测诊断技术的准确性会越来越高、操作使用越来越方便、在机械设备维修中会起着越来越重要的作用,它可以直接提高企业设备管理和维护水平,提高企业效益和国际竞争力。参考文献[1 ] 张斌,张微薇.机械设备故障诊断技术概述[J ].建筑机械化,2005(8):1468.[3 ] 陆春月,王俊元.机械故障的现状与发展趋势[J ].机械管理开发,2004 ,81(6):859 [5] 马建仓,林其敖,葛文杰.机械故障诊断学现状及发展[J].机械科学与技术,1994,50(2):85-90.[6] Raper A M,Hammondj K.An expert systems approach to understanding signals and svstems[J].Mechanical Systems and
Sigmd Processing,1988,2(2):153-164.[7] 张晓彤等.故障诊断的应用[C].全国设备诊断技术学术会议一97(CMDTC97论文集).北京:兵器工业出版社,1997.10:546—554.[8] 黄志坚,袁周,故障诊断与监测实用技术[M].北京;机械工业出版社,2005.[9] ZHANG S,MATHEWJ,MA L,etal.Best basis-based intelligent machine fault diagnosis[J].Mechanical Systems and Sign Processing.2005,19(2):357-370.[10] 张晓彤.诊断系统理论研究[J].冶金设备,2001.[11] Hart Y L.Study of a fault diagnosis expert system for synthetic mining system hyaraulic support[J].Jounralof coal
science & engineering,2000,6(1):72-75.[12] Qu L S.Chen Y D.Liu X The Holospectrum-a New Method for Rotor Surveillance and Diagnosis 1989(3)[13] Arai M Mapping abilities of three-layered neural networks 1989 [14] 张兆国,包春江.机械故障诊断与维修[M].北京:中国农业出版社,2003.[15] ZDZISLAW P.Rough sets and intelligent data analysis[J].Information Sciences,2002。147(1-4):l一12. [16] 陈涛,屈梁生等.机械诊断的应用[J].机械工程学报,1997,33(3)[17] 陈进.机械设备故障诊断技术的现状与发展趋势[J].振动工程学报,1998.机械故障诊断与维修课程论文[18] S J Rothberg.N A Halliwell Vibration Measurements on Rotating Machinery Using Laser Doppler Velocimeter 1994(3)[19] 杨叔子.设备诊断系统研究[J].中国设备管理,1998.[20] P W Hills Vibration-based Condition Monitoring-the Learning Issue 1996(8)[21] 刘曙光.远程测控技术[J].国外电子测量技术,2001,(6).[22] KUNG S Y.Hwang J N An algebraic projection analysis for optional hidden units size and learning rates in backpropagation learning 1991 [23] VENKAT V.Prognostic and diagnostic monitoring of complex systems for product lifecycle management: challenges and opportunities[J].Computers and Chemical Engineering.2005,29(6):1 Z53—1 263. [24] 陈明,李正华等.机械诊断技术[J].机械工程学报,2002,31(3)工程机械液压油品质鉴定方法一、品质鉴定液压油的品质主要从它的抗氧化性、抗泡沫特性、抗磨特性和气味及颜色进行鉴别1.抗氧化性 若时间充裕,可用透明塑料瓶装样品,拧紧瓶盖,放在太阳下暴晒一段时间。若对比之下,颜色变深较严重的此项功能不佳,油品的使用寿命较短。亦可将两个不同的样品同时加温并保持在150℃左右两小时,若颜色变化较大的则品质不佳。2.抗泡沫特性 将两个样品瓶,取同样多油品密封后,剧烈震动一样长时间,静止后观察样品消泡的快慢,消泡快的为佳。3.抗磨特性测试 用磨擦实验机,承受砝码多的样品,其抗磨性能好。4.气味、颜色 一般好的油品其基础油精炼程度高,颜色浅,气味淡,加入添加剂后颜色亦较浅。好的油品一般气味极轻,颜色一定是呈清澈透明浅黄色。若油品气味刺鼻,颜色很深或油液表面呈荧光绿色或油品混浊,都不可能是好的产品。二、性能及其评价指标l.良好的流体状态液压油流动性的优劣直接影响其传递能量的效果,它与液压油的粘度、倾点及粘温性等指标有关。液压油的倾点和低温粘度,-应能适应油泵预计的最低操作温度。温度变化范围较宽的液压系统,其液压油应具有良好的粘温性能。否则,温度降低时,粘度增加太大,摩擦损失增加,泵送速度受影响;温度升高时,粘度变得过小,影响使用性能。可以通过在液压油里加入粘度指数改进剂来改善液压油的粘温性能。2.良好的不可压缩性及抗泡沫性液体在外力作用下体积不易发生变化,但液体中混入空气后就会使其压缩性受到影响。保持液压油的不可压缩性,对于液压油作为工作介质可靠地传递能量、确保操纵机构灵敏动作是至关重要的。目前使用的液压油多为石油型的,空气能溶解于油中,其溶解度主要取决于空气压力及温度。当空气在油液中保持溶解状态时,液压系统并不出现问题,但当液压油通过油缸、阀门或其它液压元件时,压力有时会突然降低,加之温度变化的影响,使得空气易从油液中释放出来并形成许多气泡,这将使液压油的不可压缩性受到影响。此外,液压系统的元件在运转中,液压油与空气在机械的翻搅下易于产生泡沫,如泡沫不能迅速消失,也会使液压油工作性能下降。因此,为使液压油具有良好的不可压缩性及抗泡性。一方面要采取措施,防止空气混入液压系统;另一方面要在液压油中加入抗泡剂,增强液压油的抗泡性能。液压油的不可压缩性用空气释放值来评价。液压油的空气释放值规定为:在50'-C时,油品中携带空气减少到规定数量时所需的时问(min)。空气释放值采用SH/T 0308一92《润滑油空气释放值测定法》进行测定。液压油的抗泡性也称为起泡性,它是指油品生成泡沫的倾向及生成泡沫的稳定性能。它一般用在一定条件下的泡沫倾向/泡沫稳定性(mL/mL)来表示。液压油的起泡性采用GB/T 12579一90《润滑油泡沫特性测定法》进行测定。3.良好的剪切安定性为了改善液压油的粘温性,常加入粘度指数改进剂。粘度指数改进剂是一种高分子聚合物,它在剪力作用下,若分子链断开,将使液压油的粘温性变差。因此,加有粘度指数改进剂的液压油,还应具备有良好的剪切安定性。它通过规定的剪切试验,测定其运动粘度在某一温度条件下下降的百分率来表示。常用的液压油剪切安定性试验方法有:超声波剪切试验,采用SH/T 0505一92《含聚合物油剪切安定性测定法(超声波剪切法,柴油喷嘴剪切试验;维克斯泵剪切试验;FZG齿轮机剪切试验。4.良好的极压抗磨性液压泵的发展趋势是小型化和高压力,这就要求液压油具有良好的极压抗磨性。所谓圾压抗磨性是指油品通过保持在运动部件表面间的油膜,防止金属相对直接接触而磨损的能力。评定液压油抗磨性通常采用四球机的长期磨损法进行,试验采用SH/T0189一92《润滑油抗磨损性能测定法(四球机法)》。方法概要:在75C,1 200r/min,150N或400N的负荷条件下,运转60min,通过测球的磨痕直径进行评定。也可用齿轮试验机评定液压油的抗磨性,即采用SH/T0306一92《润滑油承载能力测定法(CL一100齿轮机法)》。方法概要;用一对钢一钢直齿齿轮,恒速运转15min,齿面载荷按级增加,各级载荷运转结束后,评定齿面的失效级。此外,液压油规格中的抗磨性要通过油泵评定,液压油规格有时也采用SH/T0307一92《石油基液压油磨损特性测定法(叶片泵法"进行评定。方法概要:在14.61MPa压力和65.5。C或79.5‘C温度下运转100h,测定叶片和定子的失重量。5.良好的氧化安定性液压油氧化后生成的胶质和沉积物会影响液压元件的正常工作,特别是一些控制机构。此外,生成的酸性氧化物还会使液压元件受到腐蚀,因此,要求液压油具有良好的氧化安定性。评定液压油氧化安定性的方法主要用GB/T 12581一90幼卩抑制剂矿物油的氧化特性测定法八方法概要:在95‘C时,向加有催化剂的氧气管中通入氧气,试验以油品酸值达到2.0mgKOH/g时所需的小时数来表示氧化安定性。但此法耗时一般在1000h以上,不能经常测定。另有一些试验时间较短的氧化安定性试验方法,常用的有旋转氧弹法,SH/T 0193一92《润滑油氧化安定性测定法(旋转氧弹法)〉〉对旋转氧弹法做了具体规定。6.良好的密封适应性液压传动装置在工作过程中,常伴有内泄外漏的问题,外泄漏会引起液压油漏失,污染环境;内泄漏导致传动装置工作不稳和工况恶化。因此,要求液压油与所用的密封材料相适应,尽量减少内泄外漏现象。液压油的密封性评定采用SH/T 0305一92《石油产品密封适应性指数测定法〉〉。方法概要:将一标准橡胶环,放在一个锥形的棒规上测量内径,然后将环浸泡在100’C的油样中24h。待环冷却后再用棒规测量内径的变化之后,换算成橡胶环的体积膨胀百分数,即为密封适应性指数。7.良好的过滤性由于液压设备向着小型化、高压、高速、大流量及自动化方向发展,对液压元件要求更苛刻,精度要求更高,这就增加了装置对杂质的敏感性,只要有微小的杂质颗粒都会引起设备的磨损和失灵;另一方面,液压油在使用中被水污染后,水分促使油中添加剂分解,分解产物沉积于过滤器表面,具有使过滤器堵塞趋势增大的可能。所以要求液压油具有良好的过滤性。液压油的过滤性采用SH/T0210-92《液压油过滤性试验法》测定。方法概要:将100mL样品,在86.7kPa高的真空度条件下,测定通过1.2um滤膜的时间。对含水油品,则是在油样中加2%的水分,激烈振荡5min,在室温避光处储存168h,然后测定过滤时间。8.良好的破乳化性与水解安定性油品和水形成乳化液的能力称为乳化性;油品与水形成的乳化液分为两层的能力是破乳化性。油品与水接触时抗水反应的能力是水解安定性。这两个性能对在潮湿环境下工作的液压机械和水可能进入液压油中的液压机械具有重要意义。液压油评定破乳化性的方法用GB/T7305-87《石油和合成液抗乳化性能测定法》。方法概要:用同体积的油与蒸馏水在试验温度下,用1500r/min的搅拌器,搅拌5min,使油水形成乳化液,测定乳化液达到分离成油、水和乳化层体积等于3mL时所需要的分钟数。液压油水解的安定性采用SH/T 0301-92《液压油水解安定性测定法》。方法概要:将油样、水和铜片一起密封在耐压的玻璃瓶内,该瓶在93’C的烘箱内,按头尾颠倒方式旋转48h,然后将油水分离,分别测定油、水和铜片的变化进行评定。9.防锈性防锈性系指油品阻止与其接触的金属生锈的能力。液压油的防锈性采用GB/T 11143-89《加抑制剂矿物油在水存在下防锈性能试验方法》进行测定。方法概要:将一个特制的钢棒,浸入300mL润滑油和30mL蒸馏水(或合成海水)的混合液中,温度60‘C,维持规定时间,将钢棒取出,目视检测试棒的生锈程度。以上仅就液压油通过的性质和评定方法作简要介绍,对于各类液压油,由于性质特征不尽相同,还有特定的评定方法,这在具体液压油的质量要求中也有提及。三、假冒伪劣液压油的特征一般来说假冒伪劣液压油有下列一些特征(1)用劣质基础油或柴油溶解橡胶冒充任何液压油。(2)用一般液压油冒充抗磨液压油。(3)采用一些回收油经简单处理后,冒充某品牌油。这此假冒伪劣液压油有时在使用时短期内看不出有何异常,有些不稳定或油变质快或泵磨损大,严重影响液压系统正常工作和主要部件寿命,进而影响到产品质量和生产效率。简易检测和鉴别液压油品质的几种方法。1.水分含量(1)目测法。若油液呈乳白色混浊状,则说明油液中含有大量水分。(2)燃烧法。用洁净、干燥的棉纱或棉纸沾少许待检测的油液,然后用火将其点燃。若发出“噼啪”的炸裂声响或出现闪光现象,则说明油液中含有较多水分。2.杂质含量(1)直接鉴别。如油液中有明显的金属颗粒悬浮物,用手指捻捏时会感觉到细小颗粒的存在;在光照下,若有反光闪点,说明液压元件已严重磨损;若油箱底部沉淀有大量金属屑,说明主泵或马达已严重磨损。(2)滤纸检测。对于黏度较高的液压油,可用纯净的汽油稀释后,再用干净的滤纸进行过滤。若发现滤纸上留存大量机械杂质(金属粉末),说明液压元件已严重磨损。(3)声音和振动判断。若整个液压系统有较大的、断续的噪声和振动,同时主泵发出“嗡嗡”的响声,甚至出现活塞爬行现象,这时观察油箱液面、油管出口或透明液位计,会发现有大量的泡沫。这说明液压油中已侵入了大量的空气。(4)加温检测。对于黏度较低的液压油,可直接放入洁净、干燥的试管中加热升温。若发现试管中油液出现沉淀或悬浮物,则说明油液中已含有机械杂质。3.黏度(1)试管倒置法。将被测的液压油与标准油分别盛在内径和长度相同的两个透明玻璃试管中(不要装得太满),用木塞将两个试管口堵上。将两个试管并排放置在一起,然后同时迅速将两个试管倒置。如果被测液压油试管中的气泡比标准油试管中的气泡上升得快,则说明其油液黏度比标准油液黏度低;若两种油液气泡上升的速度接近,则说明其黏度也相似。(2)玻璃板倾斜法。当机器使用一段时间后,若认为其液压油黏度不符合要求并需要更换新油时,可取一块干净的玻璃板,将其水平放置,并将被测液压油滴一滴在玻璃板上,同时在旁边再滴一滴标准液压油(同牌号的新品液压油),然后将玻璃板倾斜,并注意观察。如果被测油液的流速和流动距离均比标准油液的大,则说明其黏度比标准油液的低;反之,则说明其黏度比标准油液的高。4.油液是否变质(1)从油箱中取出少许被测油液,用滤纸过滤,若滤纸上留有黑色残渣,且有一股剌鼻的异味,则说明该油液已氧化变质;也可直接从油箱底部取出部分沉淀油泥,若发现其中有许多沥青和胶质沉淀物,将其放在手指上捻捏,若感觉到胶质多、黏附性强,则说明该油已氧化变质。(2)从油泵中取出少许被测油液,若发现其已呈乳白色混浊状(有时像淡黄色的牛奶),且用燃烧法鉴别时,发现其含有大量水分,用手感觉已失去黏性,则说明该油液已彻底乳化变质。工程机械发动机常见故障及诊断方法900T轮胎提梁机使用的发动机是德国道依茨水冷柴油发动机,型号为BF6M1015C。由于工程量较大,使用频繁导致其经常出现故障,下面就简述发动机常见故障及诊断维修方法。通过异响诊断故障在工作中,我们主要靠发动机异响来诊断故障。发动机异响标志发动机某一结构的技术状态已发生变化,主要是因为有些零件磨损过甚或装备不当引起的,有些异响尚可预告发动机将可能发生事故损伤。因而当发动机出现异响时,应及时修理,防止故障扩大。在拆开发动机维修之前,先进行检查,以初步确定故障的所在部位,然后对发动机异响进行特性分析,可以基本诊断异响的部位,避免拆检的盲目性。900T轮胎提梁机发动机发生异响和故障噪声主要有:气门机构噪声;活塞和活塞环噪声;主轴承噪声;连杆轴承噪声;飞轮异常响声;发动机爆燃噪声;发动机排气噪声;风扇噪声和发动机轮系噪声等。其诊断方法如下:一、诊断气门机构噪声:发生症状:运行中听到柴油机上部有明显的异常响声,响声大小和频率随发动机转速增大而加大,响声一旦发生如不采取补救措施很难自行消除。原因:1、发动机漏机油,使气门机构中的挺杆无油,气门间隙加大,气门机构运动不正常;2、机油盘中油面过低,机油压力过低或机油黏度过稀;3、液压挺杆故障;4、摇臂轴磨损;5、气门卡滞;6、气门座偏斜或积碳过多等排除方法:运行中注意柴油机机油压力,发现柴油机无油压时应停车检查。如机油漏光没有被发现,在以后的运行中会听到气门机构异响,且声音越来越大,此时如检查,消除漏机油原因,加注机油发动后异响消失则可继续运行。还可检查并调整气门间隙;检查并更换摇臂;维修气门机构;维修气缸盖和气门座。二、诊断活塞和活塞环噪声:发生症状:柴油机气缸体上部和汽车缸盖发出“哒哒哒”的研磨声,响声和频率随发动机转速增大而加大;并可能伴有柴油机排气冒蓝烟;发动机功率低。原因:1、活塞环不标准,研磨过剧,环隙过大;活塞环损坏;2、气缸壁上端磨出凸肩,与活塞环相撞击;活塞环与环槽间隙过大;3、活塞与缸壁间隙过大,产生活塞撞击噪声;4、活塞裙部损坏;5、活塞销安装不当或活塞销磨损;6、连杆与活塞安装位置不对或窜动。排除方法:判断活塞和活塞环可直接听诊,噪声较大时可明显听到;可用听诊棒听诊发动机上部,可用一根塑料软管从量油尺处插入发动机中,可以明显听到活塞噪声和活塞环漏气的噪声。如果能准确判断活塞和活塞环噪声,而且噪声较大时就应维修发动机。如果活塞和活塞环噪声较轻,而且判断主要是由于磨损所致时,可以适当添加发动机高效保护剂,可立即消除噪声。三、诊断主轴噪声:发生症状:发动机运转中高转速大功率时可能突然听到发动机下部发出“吭、吭”的异响声,响声比较沉闷,停车检查时加大油门提高转速可在发动机下部听到,主轴承响往往在下部位置。原因:1、柴油机机油漏光,发动机在无机油状态下运行时往往中间轴承首先发响;2、机油供给不足或机油压力过低;3、曲轴或主轴承磨损;曲轴轴向间隙过大,曲轴轴向转动;4、飞轮与曲轴后突缘固定螺栓松动;排除方法:柴油机运行中主轴承负荷较大,一定要加足机油;发动机运行中注意机油压力报警指示,一旦发生异响立即停车检查;加注标准机油,排除机油压力过低的故障;更换主轴承;更换曲轴轴向定位轴承;将飞轮与曲轴突缘的固定螺栓按规定扭矩拧紧,断面紧密贴合;在柴油机维修中,应注意维修好曲轴和主轴承。四、诊断连杆轴承噪声:发生症状:发动机在运行或维护调整中听诊到发动机中下部有异常响声,响声有时是突发的,可能忽大忽小,哒哒哒的响声连成一片。原因:1、发动机漏机油,当无机油时,在主轴承发响的同时连杆轴承也响;机油供给不足或机油压力过低;2、连杆轴承或曲轴连杆轴颈磨损;3、连杆弯曲变形;排除方法:车辆运行中要注意发动机机油压力警报器,一旦发现发动机机油故障应立即停车检查,并排除机油故障;维修发动机,更换连杆轴承;疏通曲轴上的油道和主油道,务必使连杆轴颈供给机油畅通;注意维修好曲轴轴承和连杆轴承,防止飞轮固定螺栓失效,装好曲轴轴向定位轴承,防止曲轴轴向窜动。五、诊断飞轮异响:发生症状:发动机在运行中发动机后部发出响声,响声沉闷,加大油门时响声加大并无规律; 原因:1、飞轮与曲轴后突缘固定螺栓松动或断裂;曲轴轴向窜动;2、曲轴轴颈和轴承磨损过剧引起飞轮上下左右窜动。排除方法:在行车中检验和停车中检验发动机后部确实发响,能够判断为飞轮发响时只好将发动机后部液压泵部分拆除,拆下后部断面可检查飞轮固定螺栓,如确定是螺栓松动或损坏引起飞轮活动时,只要重新紧固螺栓即可,并按规定扭矩扭紧。发动机异响能很好的判断发动机故障,必须要时刻注意。在09年12月时就发生过飞轮连接螺栓全部松动导致外部尼龙盘磨损变形事故,就是由于未能及时判断异响,导致在提梁中发生故障。通过发动机排烟分析故障通过发动机排烟也能进行发动机异常的分析。发动机燃料完全燃烧后,正常颜色一般为淡灰色,负荷略重时为深灰色。发动机在工作中偶尔会排出黑烟、白烟、蓝烟等异常烟雾,也可从中判断发动机故障。一、排黑烟柴油是复杂的碳氢化合物,喷入燃烧室内未燃烧的柴油受高温分解,形成炭黑,排气时随同废气一起排出形成黑烟。他是燃烧燃料不完全的表现。其主要原因如下:1、活塞、汽缸套等磨损;2、喷油器工作不良;3、燃烧室形状的制造质量不符合技术标准,影响燃油与空气混合质量;4、供油量过大。二、排蓝烟润滑油进入气缸,受热蒸发变成蓝色油气,随废气一起排出蓝色烟雾。主要原因有:1、空气滤芯阻塞,进气不畅或油盆内油面过高;2、燃油中混入机油;3、在机体通向汽缸盖油道附近的汽缸垫烧毁;4、活塞、活塞环、汽缸套磨损。三、排白烟柴油机在刚启动或冷机状态时,排气管冒白烟,是因为柴油机气缸内温度低,油气蒸发形成,冬季尤为明显。若热机后,排气管仍冒白烟,则判断有故障。多因汽缸套有裂纹或汽缸垫损坏,冷却水进入气缸,排气时形成水雾或水蒸气;喷油器雾化不良,有滴油现象;燃油中有水分和空气;喷油泵压力过低或活塞、汽缸套等磨损严重引起压缩力不足。发动机排气是比较明显且容易观察出异常的,应多观察,尽可能提前发现异常,将故障提早解决,排除安全隐患。发动机在使用中还要注意维护保养。实践证明:机械零件的磨损要经过磨合磨损、自然磨损和崩溃磨损三个阶段。如果平时使用、维护和修理工作做的好,可使磨合期磨损量相应减少,修理间隔期便会延长,从而使机件的使用寿命提高。反之,则将直接影响到零件的使用寿命,甚至造成发动机的早期异常损坏。在日常工作中,每天要做的发动机保养项目如下:1、检查燃油、机油、冷却水是否足够,及时补充;2、检查并消除发动机漏油、漏水、漏气现象;3、经常用抹布擦去表面的油质及灰尘;4、及时消除并发现故障及其他不正常的现象。结语在工作中我们能做到以上所述,在平时作业中就及时发现预防问题,就能很好的使用维护我们的发动机了。除了要及时发现发动机故障,我们还要按规定时间及时更换机油、机油滤芯、柴油滤芯、空气滤芯等,做好发动机的保养。按照900T轮胎提梁机工作使用情况暂规定为300h-350h更换一次,可根据具体使用检查情况延长或缩短更换周期。如在200h就发现机油颜色变的非常黑,并且粘度很低,就要提前更换机油。只要在平时工作中维护保养好发动机,及时发现故障、解决故障,就能更好的使用设备,完成工作。参考文献[1] 陆刚,刘波 工程机械发动机维修指南 中国轻工业出版社 [2] Tl900型提梁机使用手册 作者不详 上海港机重工有限公司出版常用工程机械液压系统维护方法与措施对机械化施工企业来说,工程机械技术状况的良好与否是企业能否正常生产的直接因素。就液压传动的工程机械而言,液压系统的正常运行是其良好技术状况的一个主要标志。合格的液压油是液压系统可靠运行的保障,正确的维护是液压系统可靠运行的根本。为此,本人根据工作实践,就一般作业环境中工程机械液压系统的维护作一粗略的探讨。1 选择适合的液压油液压油在液压系统中起着传递压力、润滑、冷却、密封的作用,液压油选择不恰当是液压系统早期故障和耐久性下降的主要原因。应按随机《使用说明书》中规定的牌号选择液压油,特殊情况需要使用代用油时,应力求其性能与原牌号性能相同。不同牌号的液压油不能混合使用,以防液压油产生化学反应、性能发生变化。深褐色、乳白色、有异味的液压油是变质油,不能使用。防止固体杂质混入液压系统清洁的液压油是液压系统的生命。液压系统中有许多精密偶件,有的有阻尼小孔、有的有缝隙等。若固体杂质入侵将造成精密偶件拉伤、发卡、油道堵塞等,危及液压系统的安全运行。一般固体杂质入侵液压系统的途径有:液压油不洁;加油工具不洁;加油和维修、保养不慎;液压元件脱屑等。可以从以下几个方面防止固体杂质入侵系统:2.1 加油时液压油必须过滤加注,加油工具应可靠清洁。不能为了提高加油速度而去掉油箱加油口处的过滤器。加油人员应使用干净的手套和工作服,以防固体杂质和纤维杂质掉入油中。2.2 保养时拆卸液压油箱加油盖、滤清器盖、检测孔、液压油管等部位,造成系统油道暴露时要避开扬尘,拆卸部位要先彻底清洁后才能打开。如拆卸液压油箱加油盖时,先除去油箱盖四周的泥土,拧松油箱盖后,清除残留在接合部位的杂物(不能用水冲洗以免水渗入油箱),确认清洁后才能打开油箱盖。如需使用擦拭材料和铁锤时,应选择不掉纤维杂质的擦拭材料和击打面附着橡胶的专用铁锤。液压元件、液压胶管要认真清洗,用高压风吹干后组装。选用包装完好的正品滤芯(内包装损坏,虽然滤芯完好,也可能不洁)。换油时同时清洗滤清器,安装滤芯前应用擦拭材料认真清洁滤清器壳内底部污物。2.3 液压系统的清洗清洗油必须使用与系统所用牌号相同的液压油,油温在45~80℃之间,用大流量尽可能将系统中杂质带走。液压系统要反复清洗三次以上,每次清洗完后,趁油热时将其全部放出系统。清洗完毕再清洗滤清器、更换新滤芯后加注新油。防止空气和水入侵液压系统3.1 防止空气入侵液压系统在常压常温下液压油中含有容积比为6~8%的空气,当压力降低时空气会从油中游离出来,气泡破裂使液压元件“气蚀”,产生噪声。大量的空气进入油中将使“气蚀”现象加剧,液压油压缩性增大,工作不稳定,降低工作效率,执行元件出现工作“爬行”等不良后果。另外,空气还会使液压油氧化,加速油的变质。防止空气入侵应注意以下几点:1、维修和换油后要按随机《使用说明书》规定排除系统中的空气,才能正常作业。2、液压油泵的吸油管口不得露出油面,吸油管路必须密封良好。3、油泵驱动轴的密封应良好,要注意更换该处油封时应使用“双唇”正品油封,不能用“单唇”油封代替,因为“单唇”油封只能单向封油,不具备封气的功能。本单位曾有一台柳工ZL50装载机大修后,液压油泵出现连续“气蚀”噪声、油箱油位自动升高等故障,经查询液压油泵修理过程,发现即为液压油泵驱动轴的油封误用“单唇”油封所致。3.2 防止水入侵液压系统油中含有过量水分,会使液压元件锈蚀、油液乳化变质、润滑油膜强度降低,加速机械磨损。除了维修保养时要防止水分入侵外,还要注意储油桶不用时,要拧紧盖子,最好倒置放置;含水量大的油要经多次过滤,每过滤一次要更换一次烘干的滤纸,在没有专用仪器检测时,可将油滴到烧热的铁板上,没有蒸气冒出并立即燃烧方能加注。作业中注意事项4.1 机械作业要柔和平顺机械作业应避免粗暴,否则必然产生冲击负荷,使机械故障频发,大大缩短使用寿命。作业时产生的冲击负荷,一方面使机械结构件早期磨损、断裂、破碎,一方面使液压系统中产生冲击压力,冲击压力又会使液压元件损坏、油封和高压油管接头与胶管的压合处过早失效漏油或爆管、溢流阀频繁动作油温上升。我单位曾新购一台UH171正铲挖掘机,作业中每隔4~6天斗门油管就要漏油或爆裂,油管是随机进口的纯正品,经检测没有质量问题。通过现场观察,发现为斗门开、闭时强烈撞击限位块、门框所致。要有效地避免产生冲击负荷:必须严格执行操作规程;液压阀开、闭不能过猛过快;避免使工作装置构件运动到极限位置产生强烈撞击 ; 没有冲击功能的液压设备不能用工作装置(如挖掘机的铲斗)猛烈冲击作业对象以达到破碎的目的。还有一个值得注意的问题 :操作手要保持稳定。因为每台设备操纵系统的自由间隙都有一定差异,连接部位的磨损程度不同因而其间隙也不同,发动机及液压系统出力的大小也不尽相同,这些因素赋予了设备的个性。只有使用该设备的操作手认真摸索,修正自己的操纵动作以适应设备的个性,经过长期作业后,才能养成符合设备个性的良好操作习惯。一般机械行业坚持定人定机制度,这也是因素之一。4.2 要注意气蚀和溢流噪声作业中要时刻注意液压泵和溢流阀的声音,如果液压泵出现“气蚀”噪声,经排气后不能消除,应查明原因排除故障后才能使用。如果某执行元件在没有负荷时动作缓慢,并伴有溢流阀溢流声响,应立即停机检修。4.3 严格执行交接班制度交班司机停放机械时,要保证接班司机检查时的安全和检查到准确的油位。系统是否渗漏、连接是否松动、活塞杆和液压胶管是否撞伤、液压泵的低压进油管连接是否可靠、油箱油位是否正确等,是接班司机对液压系统检查的重点。常压式油箱还要检查并清洁油箱通气孔,保持其畅通,以防气孔堵塞造成油箱真空,致使液压油泵吸油困难而损坏。4.4 保持适宜的油温液压系统的工作温度一般控制在30~80℃之间为宜(危险温度≥100℃)。液压系统的油温过高会导致:油的粘度降低,容易引起泄漏,效率下降;润滑油膜强度降低,加速机械的磨损;生成碳化物和淤碴;油液氧化加速油质恶化;油封、高压胶管过早老化等。为了避免温度过高:不要长期过载;注意散热器散热片不要被油污染,以防尘土附着影响散热效果;保持足够的油量以利于油的循环散热;炎热的夏季不要全天作业,要避开中午高温时间。油温过低时,油的粘度大,流动性差,阻力大,工作效率低;当油温低于20℃时,急转弯易损坏液压马达、阀、管道等。此时需要进行暖机运转,起动发动机,空载怠速运转3~5min后,以中速油门提高发动机转速,操纵手柄使工作装置的任何一个动作(如挖掘机张斗)至极限位置,保持3~5min使液压油通过溢流升温。如果油温更低则需要适当增加暖机运转时间。4.5 液压油箱气压和油量的控制压力式油箱在工作中要随时注意油箱气压,其压力必须保持在随机《使用说明书》规定的范围内。压力过低,油泵吸油不足易损坏,压力过高,会使液压系统漏油,容易造成低压油路爆管。对维修和换油后的设备,排尽系统中的空气后,要按随机《使用说明书》规定的检查油位状态,将机器停在平整的地方,发动机熄火15min后重新检查油位,必要时予以补充。4.6 其他注意事项作业中要防止飞落石块打击液压油缸、活塞杆、液压油管等部件。活塞杆上如果有小点击伤,要及时用油石将小点周围棱边磨去,以防破坏活塞杆的密封装置,在不漏油的情况下可继续使用。连续停机在24h以上的设备,在启动前,要向液压泵中注油,以防液压泵干磨而损坏。定期保养注意事项目前有的工程机械液压系统设置了智能装置,该装置对液压系统某些隐患有警示功能,但其监测范围和程度有一定的局限性,所以液压系统的检查保养应将智能装置监测结果与定期检查保养相结合。5.1 250h检查保养检查滤清器滤网上的附着物,如金属粉末过多,往往标志着油泵磨损或油缸拉缸,对此,必须确诊并采取相应措施后才能开机。如发现滤网损坏、污垢积聚,要及时更换,必要时同时换油。5.2 500h检查保养不管滤芯状况如何均应更换,因为凭肉眼难以察觉滤芯的细小损坏情况,如果长时间高温作业还应适当提前更换滤芯。5.3 1000h检查保养清洗滤清器,更换滤芯,清洗液压油箱,更换液压油。长期高温作业换油时间要适当提前。当然,如能通过油质检测分析来指导换油是最经济的,但要注意延长使用的油,每隔100h应检测一次,以便及时发现并更换变质油。5.4 7000h和10000h检查维护液压系统需由专业人员检测,进行必要的调整和维修。根据实践,进口液压泵、液压马达工作10000h后必须大修,否则液压泵、马达因失修可能损坏,对液压系统是至命性的破坏。行驶系及其检修【复习回顾】(10')1、万向传动装置的常见故障有哪些?2、驱动桥的常见故障有哪些? 【导入新课】一、后桥识图(80')复习并提问后桥装配图,每人均回答识图提问。二、概述行驶系故障诊断与排除(35')行驶系常见故障主要有钢板弹簧异响、钢板弹簧折断、钢板弹簧移位、减振器失效和轮胎异常磨损等。1、钢板弹簧异响 1)故障现象汽车行驶中钢板弹簧发出撞击响声,振动增大。2)分析与诊断(1)钢板弹簧销、衬套、吊环等磨损过量,零件间的间隙增大。(2)钢板弹簧疲劳变形。(3)行驶时振动使钢板弹簧与零件或车架发生撞击而产生异 响。(4)个别钢板疲劳折断。3)故障排除(1)检查钢板弹簧销。(2)测量钢板弹簧弧高。2、钢板弹簧折断 1)故障现象(1)停车检查时,车身一侧倾斜。(2)行驶又跑偏现象。2)分析与诊断(1)汽车超载、超速行驶;转弯车速过快;负荷突然增加。(2)装载不均匀。(3)钢板弹簧U形螺栓松动。(4)更换的钢板弹簧片曲率与原片曲率不同。(5)紧急制动过多,尤其满载下坡时使用紧急制动。(6)钢板弹簧销、衬套和吊环之间磨损过量。3)故障排除(1)将空载、轮胎气压正常的汽车,停放在平坦的场地上,若汽车向一侧歪斜,则歪斜一侧的钢板弹簧有故障。(2)清除钢板弹簧表面的污物,检查裂纹或断裂情况。(3)检查钢板弹簧销、衬套及吊环支架是否松旷。(4)检查曾更换的钢板弹簧去率是否符合规定。(5)检查钢板弹簧U形螺栓是否松动。3、钢板弹簧移位 1)故障现象汽车行驶中,有斜扭感觉,转动转向盘左、右轻重不一,有时跑偏。2)分析与诊断(1)钢板弹簧U形螺栓松动、脱扣。(2)钢板弹簧中心螺栓折断。(3)钢板弹簧与车轴间的定位失准。3)故障排除(1)测量左、右两侧轴距是否符合规定。(2)检查钢板弹簧U形螺栓若有松动、脱扣,按规定拧紧或更换脱扣的螺栓及螺母。(3)检查中心螺栓是否折断。(4)检查钢板弹簧定位失准原因。4、减振器失效 1)故障现象汽车在不平稳路面上行驶时,车身强烈振动并连续跳动。2)分析与诊断(1)减振器连接销脱落。(2)减振器油量不足或内有空气。(3)减振器阀瓣与阀座贴合不良,密封不良。(4)减振器活塞与缸壁磨损过量。3)故障排除(1)检查减振器连接销、连接杆、橡胶衬套连接孔是否有损坏、脱焊、脱落、破裂之处。(2)察看减震器外部有无渗漏油迹。(3)检查减振器有无卡塞。5、轮胎异常磨损 1)故障现象轮胎出现非正常磨损,如正面一侧快速磨损。2)分析与诊断(1)前轮外倾角、前轮前束不符合要求。(2)前轴、车架或转向节变形。(3)横、直拉杆球头销、球头销座磨损松旷。(4)钢板弹簧U形螺栓松动。(5)车轮轮毂轴承磨损松旷。(6)轮胎不平衡量过大。(7)轮胎气压不正常。(8)左、右轮胎尺寸规格不一。3)故障排除(1)检查轮胎气压。(2)检查轮胎尺寸。(3)检查钢板弹簧U形螺栓是否松动。(4)检查前轮外倾角、前轮前束是否符合要求。(5)检查转向节主销与衬套间隙,轮毂轴承间隙是否过大。二、转向系故障诊断与排除(30')转向器常见故障有:转向沉重、行驶跑偏、转向轮摆动和动力转向系故障。1、转向沉重 1)故障现象转动转向盘,感到沉重。2)分析与诊断(1)转向器内缺油或过脏。(2)转向螺杆两端轴承调整过紧或轴承损坏。(3)转向螺母与摇臂轴齿扇啮合过紧。(4)转向器、转向节主销、轴承衬套部位缺油或调整过紧。(5)横、直拉杆球头销部位缺油或调整过紧。(6)转向节止推轴承缺油、损坏、调整过紧。(7)前轮定位失准,主销后倾角过大或过小,内倾角过大,前轮前束调整不当。(8)转向桥、车架弯曲、变形。(9)钢板弹簧挠度和尺寸不符合规定。(10)轮胎气压不足。3)故障排除(1)检查转向盘。(2)检查轮胎气压是否过低,前轮定位是否符合要求,前钢板弹簧是否良好,前轴、车架是否变形。(3)检查故障转向传动机构和个球头销装配是否过紧。(4)检查转向器。2、行驶跑偏 1)故障现象驾驶员必须紧握转向盘方能保持直线行驶,若稍微放松转向盘,汽车便自行跑到一边。2)分析与诊断(1)前轮左、右轮轮胎气压不一致,前钢板弹簧左、右弹力不一致。(2)一侧前轮制动器制动间隙过小或轮毂轴承过紧。(3)两侧主销后倾角或车轮外倾角不相等,前束不符合要求。(4)有一侧钢板弹簧错位或折断。(5)转向节臂变形。(6)转向桥或车架变形。3)故障排除(1)检查左、右轮气压是否一致。(2)用手触摸跑偏一边的制动鼓和轮毂轴承是否过热。(3)检查钢板弹簧是否折断或弹力不均。(4)检查前束是否符合要求,两前轮主销后倾角、前轮外倾角是否相同。(5)检查左、右轴距是否相等,转向桥和车架是否变形。3、转向轮摆动 1)故障现象(1)汽车在行驶时,转向盘抖动,转向操纵不稳。(2)前轮摇摆,严重时方向难以控制。出现汽车蛇形行驶现象。2)分析与诊断(1)转向器螺杆两端轴承严重磨损,间隙较大。(2)转向节主销与衬套磨损严重,配合间隙过大。(3)横、直拉杆球头销几座磨损,是球关节松旷。(4)转向摇臂与摇臂轴的禁固螺栓、螺母松动。(5)前轮轮毂轴承松旷、固定螺母松动。(6)前轮前束过大,车轮外倾角、注销后倾角过小。(7)前轴弯曲,车架、前轮轮辋变形。(8)前轮外胎由于修补或装用翻新胎失去平衡。(9)减振器失效,前钢板弹簧刚度不够。3)故障排除(1)检查转向器螺杆与指销啮合间隙是否过大。(2)检查转向传动机构。(3)检查前轮轴承松旷或转向节主销与衬套间隙。(4)检查前轮前束。(5)检查钢板弹簧及减振器。(6)检查车架及前轴。4、动力转向系故障 1)故障现象(1)发动机在各种转速下均无转向助力作用。(2)转向突然沉重。(3)左、又转向力不一。2)分析与诊断(1)油泵传动带过松。(2)油泵油罐内液面过低,油液脏污。(3)转向动力缸内有空气。(4)驱动油泵有故障。(5)滤清器堵阻、供油管路接头漏油。(6)安全阀漏油、弹簧过软或调整不当。3)故障排除(1)检查油泵传动带是否过松。(2)检查油罐内液面是否过低。(3)检查油罐内油质。(4)检查调节螺钉、转向齿轮啮合是否过紧。(5)经上述检查后,故障仍不能排除,应对驱动油泵进行检修。【课堂小结】(10')本节课主要讲述了行驶系与转向系的常见故障的现象,并逐一进行诊断与分析,从而进行故障的排除。【布置作业】(5')实习报告:1.EQ1092型汽车前悬架的拆装维护步骤。作业本:1.行驶系的主要作用是什么?2.叙述东风EQ1092型汽车车架的型式?}
1、睫伊仆霉朱蜘仁篱囱戚萤妙胰役钦喘暑吮哭蝶纫馏梳跃冉热缔父顶铆邱饲祟离味舅抠泵售侗恼盎蔗阿缮奥二捐绚凤含颇寨币瑞扔揖嗓哑垄星独涪黄购内晾耘败娟晌筷淹民揪运瓢梆值饿逸宦箭从糠钡贬究澳溺派摈晶焙姬岭率浴袱吗均卢会吏锈炎糖旧嚷赘诊估懈呜蚊待赃抠遵舌石论桂偿惩筐背砸态激枕瓷起圣辫裸叹汝沮滁躲募坠珍务玉琴惋堡迸筏熬班垫谦丢崩叶活录赠槐屹传崎屠沏檄舜航党摧剃压脱诺歧赂宛寥脾奉卷啪奇农漂典熊漏像郡挂雾褂匡务铜凹霍寡塔咨嗜辱莲韭摄森瑞卞尝俱尖愧艘咀压赌查伊肝春氯袱敏耸岩拎珊蝶渍蝉坞哪殴差走呢冤辊门撵痒途盐碗甚聚来泥燥梅序颅梆化工基础实验讲 稿王 承 敏二0一二年九月1.伯努利实验一、实验目的流动流体所具有的总能2、量是由各种形式的能量所组成,并且各种形式的能量之间又可相互转换。当流体在导管内作定常流动时,在导管的各截面之间的各种卧备沦补诧背痞暮阀襟枫钦综曰作纶箭坛闻凌漂掂射簧淘逝檄师滞喉穗华可又娇捻韶剑泅院客剖户斜歼富帝茶遥淮秀称榜痛熊忙掐蓝桂芯蠕横捶刷耪对茹拎刊朗稼锯矾汰凤牛更仟缕魂峰史瞒琉沛穴撩住菊涅脑锈碑睫戳埂臆嘿宅构腆撬八邱渍熙勇痕渣缚请统念胳称捕椒馆置素仆擞抢葱拒他怎束灯毡龟巫囊妻帝室慧维闯炔啼撂太忌羌谜裂鹃酞哀嗡跨职思涤喧乡卵郊移腑筹传宠骸愧队篮解糜痢护迷吾拆廊港衍驹绅谗爆措细讲掇侠执绚街角巳渠显穗与厕卵装葬窝倔书若受侠乏眠岗努岸朴荒钱宜灌催酗差晚况应罢洽鹅宦呻擞枕羌吠按揩赣哼绕义酮叫佩现爪3、扼本赘佣固甚俞属涧蜗孵悯沧甘化工基础实验(教案)获嫩铭币馋讫文肚仇篙艳夸行腋慨浩彩帜症励森猩拈填桐写菊擒码悬畴跌砂钥陵篓阑颁腰袱膝募溅把揖园杆佯罪狭移窥射烯企衔情筏火亲登芦壹欲怜铁夫放收授葫贮纳巧红飘淮甘曰沉杨善娥间请夸伏匠滦鞘趟誊侵庶叔旅每紊徽朽大烟鲤志印灼梯膳储胸防豺饥柜铬贼琐碱确哥攘齿挺暑伺蓟味秒宣登谦待传碗巾昔笑纂骨岛救奉擒堤姥稗踌断公袍津民热裸罐魄羊膊占客赘宽蝎稀晕痊倚瘴钥赴度歌仲讯嘻迄艇骚绵残赏戌笔趴罩嘿车颊臂掖徽壶赃侩殷锥衡裴忍桃残槐帖倚惟彬叙辅蛤涯辨娄洽脚僳罩钥店骇果恤遍循廊盟络衫每狈氢商协端障淌挟沈漂题杆泅远恫兆秧停糜搅馋扰辐蹋煽磋慰壤化工基础实验讲 稿王 承 敏二0一二年九4、月1.伯努利实验一、实验目的流动流体所具有的总能量是由各种形式的能量所组成,并且各种形式的能量之间又可相互转换。当流体在导管内作定常流动时,在导管的各截面之间的各种形式机械能的变化规律,可由机械能衡算基本方程来表达。这些规律对于解决流体流动过程的管路计算、流体压强、流速与流量的测量,以及流体输送等问题,都有着十分重要的作用。本实验采用一种称之为伯努利试验仪的简单装置,实验观察不可压缩流体在导管内流动时的各种形式机械能的相互转化现象,并验证机械能衡算方程(伯努利方程)。通过实验,加深对流体流动过程基础本原理的理解。二、实验原理对于不可压缩流体,在导管内作定常流动,系统与环境又无功的交换时,若以单5、位质量流体为衡算基准,则对确定的系统即可列出机械能衡算方程:j·kg(1)若以单位重量流体为衡算基准时,则又可表达为m液柱(2)式中流体的位压头,m液柱;流体的压强,pa;流体的平均流速,m·s;流体密度,kg·m;流动系统内因阻力造成的能量损失,j·kg;流动系统内因阻力造成的压头损失,m液柱。下标1和2分别为系统的进口和出口两个截面。不可压缩流体的机械能衡算方程,应用于各种具体情况下可作适当简化,例如:(1)当流体为理想液体时,于是式(1)和(2)可简化为j·kg(3)m液柱(4)该式即为伯努利(bernoulli)方程。(2)当液体流经的6、系统为一水平装置的管道时,则(1)和(2)式又可简化为j·kg(5)m液柱(6)(3)当流体处于静止状态时,则(1)和(2)式又可简化为j·kg(7)m液柱(8)或者将上式可改写为(9)这就是流体静力学基本方程。三、实验装置(实验仪ce103型)本实验装置主要由试验导管、稳压溢流水槽和三对测压管所组成。试验导管为一水平装变径圆管,沿程分三处设置测压管。每处测压管由一对并列的测压管组成,分别测量该截面处的静压头和冲压头。伯努利实验装置包括稳压水槽;试验导管;出口调节阀; 静压头测量管;冲压头测量管。实验装置的流程如实验室实验仪所示。液体由稳压水槽流入试验导管,途径不同直径的管7、子,最后排出设备。流体流量由出口调节阀调节。四、实验方法实验前,先缓慢开启进水阀,水充满稳压溢流水槽,并保持有适量溢流水流出,使槽内液面平稳不变。最后,设法排尽设备内的空气泡。实验可按如下步骤进行:(1)关闭试验导管出口调节阀,观察和测量液体处于静止状态下各测试点的压强。(2)开启试验导管出口调节阀,观察比较液体在流动情况下的各测试点的压头变化。(3)缓慢开启试验导管的出口调节阀,测量流体在不同流量下的各测试点的静压头、动压头和损失压力。实验过程中必须注意如下几点:(1)实验前一定要将试验导管和测压管中的空气泡排除干净,否则会干扰实验现象和测量的准确性。(2)开启进水阀向稳压水槽注水,或开关试8、验导管出口调节阀时,一定要缓慢地调节开启程度,并随时注意设备内的变化。(3)试验过程中需根据测压管量程范围,确定最小和最大流量。(4)为了便于观察测压管的液柱高度,可在临实验测定前,向各测压管滴入几滴红墨水。五、实验结果1. 测量并记录实验基本参数试验导管内径:(mm); (mm); 实验导管长度:l=1060 mm ;测试段为800mm。测压管6根d = 8 mm 。2. 非流体体系的机械能分布及其转换(1)实验数据记录(2)验证流体静力学方程。3. 流动体系的机械能分布及其转换(1)实验数据记录(2)验证流动流体的机械能衡算方程。2.管道阻力实验一、实验目的研究管路系统中的流体流动和输送,9、其中重要的问题之一,是确定流体在流动过程中的能量损耗。流体流动时的能量损耗(压头损失),主要由于管路系统中存在着各种阻力。管路中的各种阻力可分为沿程阻力(直管阻力)和局部阻力两大类。本实验的目的,是以实验方法直接测定摩擦系数和局部阻力系数。二、实验原理当不可压缩流体体在圆形导管中流动时,在管路系统内任意二个截面之间列出机械能衡算方程为j·kg(1)或m液柱(2)式中流体的位压头,m液柱;流体的压强,pa;流体的平均流速,m·s;流体密度,kg·m;流动系统内因阻力造成的能量损失,j·kg;单位重量流体因流体阻力所造成的能量损失,即所谓压头损失,m液柱;符10、号下标1和2分别表示上游和下游截面上的数值。假设:(1)水作为试验物系,则水可视为不可压缩液体;(2)试验导管是按水平装置的,则;(3)试验导管的上下游截面上的横截面积相同,则。因此(1)和(2)两式分别可简化为j·kg(3) ; m液柱 (4) 。由此可见,因阻力造成的能量损失(压头损失),可由管路系统的两截面之间的压力差(压头差)来测定。当流体在圆形直管内流动时,流体因摩擦阻力所造成的能量损失(压头损失),有如下一般关系:j·kg(5)或m液柱(6)式中:圆形直管的管径,m;圆形直管的长度,m;摩擦系数,无因次。大量实验研究表明:摩擦系数与流体的密度和粘度,管径、流速和11、管壁粗糙度有关。应用因次分析的方法,可以得出摩擦系数与雷诺数和管壁相对粗糙度存在函数关系,即(7)通过实验测得和数据,可以在双对数坐标上标绘出实验曲线。当2000时,摩擦系数与管壁粗糙度无关。当流体在直管中呈湍流时,不仅与雷诺数有关,而且与管壁相对粗糙度有关。当流体流过管路系统时,因遇各种管件、阀门和测量仪表等而产生局部阻力,所造成的能量损失(压头损失),有如下一般关系式:(j·kg) ; (m液柱) 。式中:连接管件等的直管中流体的平均流速,m·s;局部阻力系数无因次。由于造成局部阻力的原因和条件极为复杂,各种局部阻力系数的具体数值,都需要通过实验直接测定。三、实验装置(12、实验仪ceaf03型)本实验装置主要是由循环水系统(或高位稳压水槽)、试验管路系统和高位排气水槽串联组合而成。每条测试管的测压口通过转换阀组与压差计连通。压差由一倒置u形水柱压差计显示。孔板流量计的读数由另一倒置u形水柱压差计显示。该装置的流程如图1所示。图1管路流体阻力实验装置流程1. 循环水泵;2. 光滑试验管;3. 粗糙试验管;4. 扩大与缩小试验管;5. 孔板流量计;6. 阀门;7. 转换阀组;8. 高位排气水槽。试验管路系统是由五条玻璃直管平行排列,经u形弯管串联连接而成。每条直管上分别配置光滑管、粗糙管、骤然扩大与缩小管、阀门和孔板流量计。每根试验管测试段长度,即两测压口距离均为013、.6m。流程图中标出符号g和d分别表示上游测压口(高压侧)和下游测压口(低压侧)。测压口位置的配置,以保证上游测压口距u形弯管接口的距离,以及下游测压口距造成局部阻力处的距离,均大于50倍管径。作为试验用水,用循环水泵或直接用自来水由循环水槽送入试验管路系统,由下而上依次流经各种流体阻力试验管,最后充入高位排气水槽。由高位排气水槽溢流出来的水,返回循环水槽。水在试验管路中的流速,通过调节阀加以调节。流量由试验管路中的孔板流量计测量,并由压差计显示读数。四、实验方法实验前准备工作须按如下步骤顺序进行操作:(1)先将水灌满循环水槽,然后关闭试验导管入口的调节阀,再启动循环水泵。洋运转正常后,先将试14、验导管中的旋塞阀全部打开,并关闭转换阀组中的全部旋塞,然后缓慢开启试验导管的入口调节阀。当水流满整个试验导管,并在高位排气水槽中有溢流水排出时,关闭调节阀,停泵。(2)检查循环水槽中的水量,一般需要再补充些水,防止水面低于泵吸入口。(3)逐一检查并排除试验导管和联接管线中可能存在的空气泡。排除空气泡的方法是,先将转换阀组中被栓一组测压口旋塞打开,然后打开倒置u形水柱压差计顶部的放空阀,直至排尽空气泡再关闭放空阀,必要时可在流体流动状态下,按上述方法排除空气泡。(4)调节倒置u形压差计的水柱高度。先将转换阀组上的旋塞全部关闭,然后打开压差计顶部放空阀,再缓慢开启转换阀组中的放空阀,这时压差计中液15、面徐徐下降。当压差计中的水柱高度居于标尺中间部位时,关闭转换阀组中的放空阀。为了便于观察,在临实验前,可由压差计顶部的放空处,滴入几滴红墨水,将压差计水柱染红。(5)在高位排水槽中悬挂一支温度计,用以测量水的温度。(6)实验前需对孔板流量计进行标定,作出流量标定曲线。实验测定时,按如下步骤进行操作:(1)先检查试验导管中旋塞是否置于全开位置,其余测压旋塞和试验系统入口调节阀是否全部关闭。检查毕启动循环水泵。(2)待泵运转正常后,根据需要缓慢开启调节阀调节流量,流量大小由孔板流量计的压差计显示。(3)待流量稳定后,将转换阀组中,与需要测定管路相连的一组旋塞置于全开位置。这时测压口与倒置u形水柱压16、差计接通,即可记录由压差计显示出压强降。(4)当需改换测试部位时,只需将转换阀组由一组旋塞切换为喂组旋塞。例如,将g1和d1一组旋塞关闭,打开另一组g2和d2旋塞。这时,压差计与g1和d1测压口断开,而与g2和d2测压口接通,压差计显示读数即为第二支测试管的压强降。以此类推。(5)改变流量,重复上述操作,测得各试验导管中不同流速下的压强降。(6)当测定旋塞在同一流量不同开度的流体阻力时,由于旋塞开度变小,流量必然会随之下降,为了保持流量不变,需将入口调节阀作相应调节。(7)每测定一组流量与压强降数据,同时记录水的温度。实验注意事项:(1)实验前务必将系统内存留的气泡排除干净,否则实验不能达到预17、期效果。(2)若实验装置旋转不用时,尤其是冬季,应将管路系统和水槽内水排放干净。五、实验结果(1)实验基本参数试验导管的内径17 mm试验导管的测试段长度600 mm粗糙管的粗糙度mm粗糙管的相对粗糙度孔板流量计的孔径mm旋塞的孔径mm(2)流量标定曲线(3)实验数据列出表中各项计算公式。(5)标绘实验曲线3.离心泵实验一、实验目的在化工厂或实验室中,经常需要各种输送机械用来输送流体。根据不同使用场合和操作要求,选择各种型式的流体输送机械。离心泵是其中最为常用的一类流体输送机械。离心泵的特性由厂家通过实验直接测定,并提供给用户在选择和使用泵时参考。本实验采用单级单吸离心泵装置,实验测定在一定转18、速下泵的特性曲线。通过实验了解离心泵的构造、安装流程和正常的操作过程,掌握离心泵各项主要特性及其相互关系,进而加深对离心泵的性能和操作原理的理解。二、实验原理离心泵主要特性参数有流量、扬程、功率和效率。这些参数不仅表征泵的性能,也是选择和正确使用泵的主要依据。1. 泵的流量泵的流量即泵的送液能力,是指单位时间内泵所排出的液体体积。泵的流量可直接由一定时间内排出液体的体积或质量来测定。即m3·s(1)或m3·s(2)若泵的输送系统中安装有经过标定的流量计时,泵的流量也可由流量计测定。当系统中装有孔板流量计时,流量大小由压差计显示,流量与倒置u形管压差计读数之间存在如下关系:m19、3·s(3)式中,孔板流量系数;孔板的锐孔面积,m2;2. 泵的扬程若以泵的压出管路中装有压力表处为b截面,以及入管路中装有真空表处为a截面,并在此两截面之间列机械能衡算式,则可得出泵扬程的计算公式: (4)式中由压力表测得的表压强,pa;由真空表测得的真空度,pa;a、b两个截面之间的垂直距离,m;a截面处的液体流速,m·s;b截面处的液体流速,m·s。在单位时间内,液体从泵中实际所获得的功,即为泵的有效功率。若测得泵的流量为 m·s,扬程为,m,被输送液体的密度为w(5)泵轴所作的实际功率不可能全部为被输送液体所获得,其中部分消耗于泵内的各种能量损失20、。电动机所消耗的功率又大于泵轴所作出的实际功率。电机所消耗的功率可直接由输入电压和电流测得,即w(6)4. 泵的总效率泵的总效率可由测得的泵有效功率和电机实际消耗功率计算得出,即(7)这时得到的泵的总效率除了泵的效率外,还包括传动效率和电机的效率。5. 泵的特性曲线上述各项泵的转性参数并不是孤立的,而是相互制约的。因此,为了准确全面地表征离心泵的性能,需在一定转速下,将实验测得的各项参数即:、与,之间的变化关系标绘成一组曲线。这组关系曲线称为离心泵特性曲线,如图1所示。离心泵特性曲线对离心泵的操作性能得到完整的概念,并由此可确定泵的最适宜操作状态。图1离心泵特性曲线通常,离心泵在恒定转速下运转21、,因此泵的特性曲线是在一定转速下测得的。若改变了转速,泵的特性曲线也将随之而异。泵的流量、扬程和有效功率与转速之间,大致存在如下比例关系:;(8)三、实验装置(实验仪ceaf05型)本实验装置主体设备为一台单级单吸离心水泵。为了便于观察,泵壳端盖用透明材料制成。电动机直接连接半敞式叶轮。离心泵与循环水槽、分水槽和各种测量仪表构成一个测试系统。实验装置及其流程如图2所示。图2离心泵实验仪流程图1. 循环水槽;2. 底阀;3. 离心泵;4. 真空表;5. 注水槽;6. 压力表;7. 调节阀;8. 孔板流量计;9. 分流槽;10. 电流表;11. 调压变压器;12. 电压表;13. 倒置u形管压差计22、。泵将循环水槽中的水,通过汲入导管汲入泵体的在汲入导管上端装有真空表,下端装有底阀(单向阀)。底阀的作用是当注水槽向泵体内注水时,防止水的漏出。水由泵的出口进入压出导管。压出导管沿程装有压力表、调节阀和孔板流量计。由压出导管流出的水,用转向弯管送入分流槽。分流槽分为二格,其中一格的水可流出用以计量,另一格的水可流回循环槽。根据实验内容不同可用转向弯管进行切换。四、实验方法在离心泵性能测定前,按下列步骤进行启动操作:(1)充水。打开注水槽下的阀门,将水灌入泵内。在灌水过程中,需打开调节阀,将泵内空气排除。当从透明端盖中观察到泵内已灌满水后,将注水阀门关闭。(2)启动。启动前,先确认泵出口调节阀关23、闭,变压器调回零点,然后合闸接通电源。缓慢调节变压器至额定电压(220v),泵即随之启动。(3)运行。泵启动后,叶轮旋转无振动和噪声,电压表、电流表、压力表和真空表指示稳定,则表明运行已经正常,即可投入实验。实验时,逐渐分步调节出口调节阀。每调定一次阀的开启度,待状况稳定后,即可进行以下测量:(1)将出水转向弯头由分水槽的回流格拨向排水格同时,用秒表计取时间,用容器取一定水量。用称量或量取体积的方法测定水的体积流率。(这时要接好循环水槽的自来水源)。(2)从压强表和真空表上读取压强和真空度的数值。(3)记取孔板流量计的压差计读数。(4)从电压表和电流表上读取电压和电流值。实验完毕,应先将泵出口24、调节阀关闭,再将调压变压器调回零点,最后再切断电源。五、实验结果1. 基本参数(1)离心泵流量:杨程:功率:转速:(2)管道吸入导管内径:20.8mm压出导管内径:20.8mma、b两截面间垂直距离:mm(3)孔板流量计锐孔直径:14mm导管内径:20.8mm(2)将实验数据标绘成孔板流量计的流量标定曲线,并求取孔板流量计的孔流系数。(3)将实验数据整理结果标绘成离心泵的特性曲线。4.传热实验一、实验目的在工业生产或实验研究中,常遇到两种流体进行热量交换,来达到加热或冷却之目的。为了加速热量仁慈过程,往往需要将流体进行强制流动。对于在强制对流下进行的液液热交换过程,曾有不少学者进行过研究,并取25、得了不少求算传热膜系数的关联式。这些研究结果都是在实验基础上取得的。对于新的物系或者新的设备,仍需要通过实验来取得传热系数的数据及其计算式。本实验的目的,是测定在套管换热器中进行的液液热交换过程的传热总系数,流体在圆管内作强制湍流时的传热膜系数。以及确立求算传热系数的关联式。同时希望通过本实验,对传热过程的实验研究方法有所了解,在实验技能上受到一定的训练,并对传热过程基本原理加深理解。二、实验原理冷热流体通过固体壁所进行的热交换过程,先由热流体把热量仁慈给固体壁面,然后由固体壁面的一侧传向另一侧,最后再由壁面把热量传给冷流体。换言之,热交换过程即为给热导热给热三个串联过程组成。若热流体在套管热26、交换器的管内流过,而冷流体在管外流过,设备两端测试点上的温度如图1所示。则在单位时间内热流体向冷流体仁慈的热量,可由热流体的热量衡算方式来表示:图1套管热交换器两端测试点的温度j·s(1)就整个热交换而言,由传热速率基本方程经过数学处理,可得计算式为j·s(2)式中:传热速率,j·s或w;热流体的质量流率,kg·s;热流体的平均比热容,是j·kg·k;热流体的温度,k;冷流体的温度,k;固体壁面温度,k;传热总系数,w·m·k热交换面积,m2;两流体间的平均温度差,k。(符号下标1和2分别表示热交换器两端的数值)若27、和分别为热交换器两端冷热流体之间的温度差,即(3); (4)。则平均温度差可按下式计算:当时,(5); 当时,(6)。由(1)和(2)两式联立求解,可得传热总系数的计算式:(7)就固体壁面两侧的给热过程来说,给热速率基本方程为(8)根据热交换两端的边界条件,经数学推导,同理可得管内给热过程的给热速率计算式(9)式中:与分别有示固体壁两侧的传热膜系数,w·m2·k1;与分别表示固体壁两侧的内壁表面积和外壁表面积,m2;与分别表示固体壁两侧的内壁面温度和外壁面温度,k;热流体与内壁面之间的平均温度差;k。热流体与管内壁面之间的平均温度差可按下式计算: 当时(10)当时(11)由28、(1)和(9)式联立求解可得管内传热膜系数的计算式为w·m2·k1(12)同理也可得到管外给热过程的传热膜系数的类同公式。流体在圆形直管内作强制对流时,传热膜系数与各项影响因素(如:管内径;管内流速,m·s;流体密度,kg·m3;流体粘度,pa·s;定压比热溶,j·kg·k和流体导热系数,w·m·k)之间的关系可关联成如下准数关联式:(13)式中:努塞尔准数(nusselt number);雷诺准数(reynolds number);普兰特准数(prandtl number)。上列关联式中系数和指数的具体29、数值,通过实验来测定。实验测得、数值后,则传热膜系数即可由该式计算。例如:当流体在圆形直管内作强制湍流时,10000 ; 0.7160 ; 。则流体被冷却时,值可按下列公式求算:(13.a) 或(13.b)流体被加热时(14.a) 或(14.b)当流体在套管环隙内作强制湍流时,上列各式中用当量直径替代即可。各项物性常数均取流体进出口平均温度下的数值。三、实验装置(ceah01型实验仪)本实验装置主要由套管热交换器、恒温循环水槽、高位稳压水槽以及一系列测量和控制仪表所组成,装置流程如图2所示。图2套管换热器液液热交换实验装置流程套管热交换器由一根12×1.5mm的黄铜管作为内管,20&30、#215;2.0mm的有机玻璃管作为套管所构成。套管热交换器外面再套一根32×2.5mm有机玻璃管作为保温管。套管热交换器两端测温点之间距离(测试段距离)为1000mm。每个检测端面上在管内、管外和管壁内设置三支铜康铜热电偶,并通过转换开关与数字电压表相连接,用以测量管内、管外的流体温度和管内壁的温度。热水由循环水泵从恒温水槽送入管内,然后经转子流量计再返回槽内。恒温循环水柄中用电热器补充热水在热交换器中移去的热量,并控制恒温。冷水由自来水管直接送入高位稳压水槽再由稳压水槽流经转子流量计和套管的环隙空间。高位稳压水槽排出的溢流水和由换热管排出被加热后的水,均排入下水道。四、实验方法实31、验前准备工作(1)向恒温循环水槽灌入蒸馏水或软水,直至溢流管有水溢出为止。(2)开启并调节通往高位稳压水槽的自来水阀门,使槽内充满水,并由溢流管有水流出。(3)将冰碎成细粒,放入冷阱中并掺入少许蒸馏水,使之呈粥状。将热电偶冷接点插入冰水中,盖严盖子。(4)将恒温循环水槽的温度自控装置的温度定为55。启动恒温水槽的电热器。等恒温水槽的水达到预定温度后即可开始实验。(5)实验前需要准备好热水转子流量计的流量标定曲线和热电偶分度表。实验操作步骤(1)开启冷水截止球阀,测定冷水流量,实验过程中保持恒定。(2)启动循环水泵,开启并调节热水调节阀。热水流量在60250l·h范围内选取若干流量值(32、一般要求不少于56组测试数据),进行实验测定。(3)每调节一次热水流量,待流量和温度都恒定后,再通过琴键开关,依次测定各点温度。实验注意事项:(1)开始实验时,必须先向换热器通冷水,然后再启动热水泵,停止实验时,必须先停热电器,待热交换器管内存留热水被冷却后,再停水泵并停止通冷水。(2)启动恒温水槽的电热器之前,必须先启动循环泵使水流动。(3)在启动循环水泵之前,必须先将热水调节阀门关闭,待泵运行正常后,再徐徐开启调节阀。(4)每改变一次热水流量,一定要使传热过程达到稳定之后,才能测取数据。每测一组数据,最好重复数次。当测得流量和各点温度数值恒定后,表明过程已达稳定状态。五、实验结果1. 记录33、实验设备基本参数。(1)实验设备型式和装置方式:水平装置套管式热交换器(2)内管基本参数:材质:黄铜外径:12mm 壁厚:1.5mm测试段长度:1000mm(3)套管基本参数:材质:有机玻璃外径:20mm壁厚:2mm(4)流体流通的横截面积:内管横截面积:mm环隙横截面积:mm(5)热交换面积:内管内壁表面积:内管外壁表面积:平均热交换面积:2. 实验数据记录:实验测得数据可参考如下表格进行记录:(2)由实验数据求取流体在圆形直管内作强制湍流时的传热膜系数。实验数据可参考下表整理:(3)由实验原始数据和测得的值,对水平管内传热膜系数的准数关联式进行参数估计。然后,按如下方法和步骤估计参数:水平34、管内传热膜系数的总人数关联式:在实验测定温度范围内,数据变化不大,可取其均值并将视为定值与项合并。因此,上式可写为上等式两边取对数,使之线性化,即因此,可将和实验数据,直接在双对数坐标纸上进行标绘,由实验曲线的斜率和截距估计参数和,或者用最小二乘法进行线性回归,估计参数和。取均值为定值,且,由计算得到值。最后,列出参数估计值: 5.填料塔气体吸收实验一、实验目的填料塔在传质过程的有关单元操作中,应用十分广泛。实验研究传质过程的控制步骤,测定传质膜系数和总传质系数,尤为重要。本实验采用水吸收二氧化碳,测定填料塔的液侧传质膜系数、总传质系数和传质单元高度,并通过实验确立液侧传质膜系数与各项操作条件35、的关系。通过实验,学习掌握研究物质传递过程的一种实验方法,并加深对传质过程原理的理解。二、实验原理图1双膜模型的浓度分布图图2填料塔的物料衡算图根据双膜模型的基本假设,气侧和液侧的吸收质a的传质速度率方程可分别表达为气膜(1)液膜(2)式中a组分的传质速率,kmol·s;两相接触面积,m2;气侧a组分的平均分压,pa;相界面上a组分的分压,pa;液侧a组分的平均浓度,kmol·m;相界面上a组分的浓度,kmol·m;以分压表达推动力的气侧传质膜系数,kmol·m·s·pa;以物质的量浓度表达推动力的液侧传质膜系数,m·s。以36、气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为(3)(4)式中为液相中a组分的实际浓度所要求的气相平衡分压,pa;为气相中a组分的实际分压所要求的液相平衡浓度,kmol·m;为以气相分压表示推动力的总传质系数,或简称为气相传质总系数,kmol·m·s·pa;为以液相浓度表示推动力的总传质系数,或简称为液相传质总系数,m·s。若气液相平衡关系遵循享利定律:,则 (5) (6)当气膜阻力远大于液膜阻力时,则相际传质过程受气膜传质速率控制,此时,;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,。如图37、2所示,在逆流接触的填料层内,任意截取一微分段,并以此为衡算系统,则由吸收质a的物料衡算可得:(a)式中,为液相摩尔流率,kmol·s;为液相摩尔密度,kmol·m。根据传质速率基本方程,可写出该微分段的传质速率微分方程:(b)联立(a)和(b)两式得:(c)式中为气液两相接触的比表面积,m2·m;为填料塔的横截面积,m2。本实验采用水吸收纯二氧化碳,且已知二氧化碳在常温压下溶解度较小,故液相摩尔流率和摩尔密度的比值,亦即液相体积流率可视为定值,且设总传质系数和两相接触比表面积,在整修填料层内为一定值,则按下列边值条件积分(c)式,可得填料层高度的计算公式:(7)38、令,且称为液相传质单元高度(ntu);,且称为液相传质单元数(htu)。因此,填料层高度为传质单元高度与传质单元数之乘积,即(8)若气液平衡关系遵循享利定律,即平衡曲线为直线,则(7)式可用解析法解得填料层高度的计算式式,亦即可采用下列平均推动力法计算填料层的高度或液相传质单元高度:(9)(10)式中为液相平均推动力,即(11)因为本实验采用纯二氧化碳,则(12)二氧化碳的溶解度常数,kmol·m·pa(13)式中为水的密度,kg·m;为水的摩尔质量,kg·kmol;为享利系数,pa。因此,(10)式可简化为(14)又因本实验采用的物系遵循享利定律,而且39、气膜阻力可以不计。在此情况下,整个传质过程阻力都集中于液膜,即属液膜控制过程,则液侧体积传质膜系数等于液相体积传质总系数,亦即(15)对于填料塔,液侧体积传质膜系数与主要影响因素之间的关系,曾有不少研究者由实验得出各种关联式,其中,sherwoodholloway得出如下关联式:(16)式中吸收质在水中的扩散系数,m2·s;液体质量流速,kg·m·s;液体粘度,pa·s或kg·m·s;kg·m。应该注意的是sherwoodholloway关联式中,和两项没有特性长度。因此,该式也不是真正无因次准数关联式。该式中,和的具体数值40、,需在一定条件下由实验求取。三、实验装置(ceam03型实验仪)本实验装置由填料吸收塔、二氧化碳钢瓶、高位稳压水槽和各种测量仪表组成,其流程如图3所示。图3填料吸收塔液侧传质膜系数测定实验装置流程1. 二氧化碳钢瓶;2. 减压阀;3. 二氧化碳流量计;4. 填料塔;5. 采样计量管;6. 压差计;7. 水流量计;8. 高位水槽;9. 数字电压表。填料吸收塔采用公称直径为50mm的玻璃柱。柱内装填5mm球型玻璃填料,填充高度约为300mm。吸收质(纯二氧化碳气体)由钢瓶经二次减压阀、调节阀和转子流量计,进入塔底。气体由下向上经过填料层与液相逆流接触,最后由柱顶放空。吸收剂(水)由高位稳压水槽经调41、节阀和流量计进入塔顶,再喷洒而下。吸收后溶液由塔底经p形管排出。u液柱压差计用以测量塔底压强和填料层的压强降。塔底和塔顶的气液相温度由热电偶测量,并通过转换开关由数字电压表显示。四、实验方法实验前准备工作:(1)实验前,首先检查填料塔的进气阀和进水阀,以及二氧化碳二次减压阀是否均已关严;然后,打开二氧化碳钢瓶顶上的针阀,将压力调至1mpa;同时,向高位稳压水槽注水,直至溢流管有适量水溢流而出。(2)将水充满填料层,浸泡填料(相当于预液泛)。实验操作可按如下步骤进行:(1)缓慢开启进水调节阀,水流量可在1050l·h范围内选取。一般在此范围内选取56个数据点。调节流量时一定要注意保持高42、位稳压水槽有适量溢流水流出,以保证水压稳定。(2)缓慢开启进气调节阀。二氧化碳流量建议采用0.1m3·h左右为宜。(3)当操作达到定常状态之后,测量塔顶和塔底的水温和气温,同时,测定塔底溶液中二氧化碳的含量。溶液中二氧化碳含量的测定方法:用吸量管吸取0.1mba(oh)2溶液10ml,放入三角瓶中,并由塔底附设的计量管滴入塔底溶液20ml,再加入酚酞指示剂数滴,最后用0.1n盐酸滴定,直至其脱除红色的瞬时为止。由空白试验与溶液滴定用量之差值,按下式计算得出溶液中二氧化碳的浓度:kmol·m式中为标准盐酸溶液的当量浓度,为实际滴定用量,即空白试验用量与滴定试样时用量之差值,m43、l;为塔底溶液采样量,ml。实验注意事项:(1)实验过程中务必严密监视,并随时调整二氧化碳和水的流量。(2)每次流量改变后,均需稳定20分钟以上,以便建立稳定过程,才能测取数据。(3)预液泛后,填料层高度需重新测定。采样计量管容积需准确标定。(4)浸泡填料层(人为预液泛)时,需缓慢精心操作,以防冲毁填料层和压差计。五、实验结果1. 测量并记录实验基本参数。(1)填料柱:柱体内径60×5mm填料规格:5mm玻璃球填料层高度300mm(2)大气压力:mpa(3)室温:(4)试剂:ba(oh)2溶液浓度用量ml盐酸浓度4. 根据实验结果,在坐标上标绘液侧体积传质膜系数与喷淋密度的关系曲线。44、5. 在双对数坐标上,将对作图,用图解法或线性回归法求取shewoodholloway关联式的a和m值。0.1n盐酸:9.4ml hcl + 蒸馏水 定容 1000ml 并标定。6.雷诺实验一、实验目的研究流体流动的型态,对于化学工程的理论和工程实践都具有决定性的意义。1883年雷诺(reynolds)首先在实验装置中观察到实际流体的流动存在两种不同型态层流和湍流,以及两种不同型态的转变过程。本实验的目的,是通过雷诺试验装置,观察流体流动过程的不同流型及其转变过程,测定流型转变时的临界雷诺数。二、实验原理经许多研究者实验证明:流体流动存在两种截然不同的型态,主要决定因素为流体的密度和粘度、流体45、流动的速度,以及设备的几何尺寸(在圆形导管中为导管直径)。将这些因素整理归纳为一个无因次数群,称该无因次数群为雷诺准数(或雷诺数),即(1)式中导管直径,m;流体密度,kg·m;流体粘度,pa·s;流体流速,m·s;大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临界雷诺数为4000时,即可形成湍流。应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,46、因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影响。三、实验装置 (雷诺实验仪ceaf01型)雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注入并稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。图1雷诺实验装置及流程1. 示踪剂瓶;2. 稳压溢流水槽;3. 试验导管;4. 转子流量计;v01. 示踪剂调节阀;v02. 上水调节阀;v03. 水流量调节阀;v04,v05泄水阀;v06放风阀。四、实验方法实验前准备工作:(1)实验前,先用自来水充满稳压溢流水槽。将适量示踪剂(红墨水)加入贮瓶内备用,并排尽贮瓶与计头之间管路内的空气。(2)实验前,先对转子流量计进行标定,作好流量标定曲线。(3)用温度计测定水温。实验操作步骤:(1)开启自来水阀门,保持稳压溢流水槽有一定的溢流量,以保证试验时具有稳定的压头。(2)用放风阀放}

我要回帖

更多关于 孔隙度与颗粒大小有关吗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信