粒子自旋是否都具有自旋?

这就是著名的贝尔不等式(见贝尔定理)背后的问题。

问题通常是这样的:组成纠缠对的粒子是否可能携带着决定测量结果所需的所有信息,以“局部隐变量”的形式,这些信息通过测量揭示出来,但一直都存在?

例如,假设你出国旅行,到达目的地时,你注意到你只带了你所拥有的每双袜子的一半。你马上就会知道你家里的袜子抽屉里有同样数量的不匹配的袜子。这没什么神秘的,我们也不需要量子力学来解释你是如何“瞬间”获得几千英里外你的袜子抽屉的信息的。

像自旋和极化这样的东西是不同的,以一种非常不平凡的方式。

假设你以相反的方向释放一对被偏振的纠缠光子。假设它们是垂直偏振的。这意味着如果你在任何一个光子的路径上放置一个垂直方向的偏振滤波器,两个光子都会通过。当两个过滤器都是水平方向时,它们都无法通过。

但是如果滤镜的方向是45度呢?每个光子都有50%的机会通过或不通过。然而,当你进行这个实验时,你会发现光子仍然是相关的;它们要么都能通过,要么都不能通过,不管两个过滤器之间有多远。

好吧,也许光子携带的不仅仅是关于它们初始偏振的信息。假设这两个光子是一个秘密阴谋的一部分,已经讨论了它们可能遇到的偏振滤波器的所有可能的方向,并且事先就它们的行为达成了一致。

但是实验者很狡猾。他现在设置了两个偏振滤光器,一个在每个光子路径的末端,以不同的角度。一个是45度,另一个是135度。然后,他用一个非常简单的假设计算出其中一个光子通过而另一个失败的概率:一端的光子无法知道另一端偏振滤光片的设置,反之亦然。仅这个假设就足以计算两个观测值之间的相关函数的最大值。

而在实际的实验中,这个值是违反的,包括在实验中,偏振滤光片是在光子已经很好地运行之后才设置的。这就意味着不能仅仅用光子一直拥有的信息来解释这个结果。它们还需要从另一端即时传递的信息,以便展示它们的相关行为。这就是贝尔不等式的本质。

这就是我们如何知道光子(或电子,同样的论点适用)不能表现出它们实际表现出的行为,只使用它们在测量发生前拥有的信息。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至: 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

}

电子同时具有电荷和自旋两种属性,是人所共知的。电子在导体中运动产生电流,对半导体价电子的调制发展起来的晶体管器件,这些都是人们非常熟悉的,是利用了电子电荷属性。 电子的自旋属性鲜为人知,这是因为自旋磁矩是有方向性的,通常情况下电子运动过程中自旋的方向是混乱的。

电场都是自旋的。 电子同时具有电荷和自旋两种属性,是人所共知的。电子在导体中运动产生电流,对半导体价电子的调制发展起来的晶体管器件,这些都是人们非常熟悉的,是利用了电子电荷属性。 电子的自旋属性鲜为人知,这是因为自旋磁矩是有方向性的,通常情况下电子运动过程中自旋的方向是混乱的。

是在金属内部存在自由电荷,在无外加电场时金属中无电流产生。但是每一个电子都在绕着自己的圆心做无规律自旋,所以无电流产生。叫电场自旋吗

是的。电子都有自旋特征。电场与磁场是同一种力子场,磁场闭环,电场开环。磁场的力线是没有端点的,从n极出s极回,这是磁力子的振荡方向,不是受力方向。磁场的力是双向的,表现为拉扯力。而电场是单向的,表现为力势能,必须有另一电场才发生力关系。当电粒子在磁场中,电力线与极点是没有力关系的,而是两种力线的结合力。如图:电磁咬合点a力线相同,形成咬合力,由于磁场中的力子并没有运动,而是表现为把电力线粘贴在场中。而b点方向相反,是排斥力,表现为负势能。电子离开后原子后,得到很高的势能,它在磁场中释放能量,当磁力线粘贴后由于释放而形成横向受力。如果电子自旋相反,那么受力是相反的。另一种情况,电子的势能非常弱,处于吸收状态,它的运动同样相反。

}

医学影像学Medical Imaging,是研究借助于某种介质(如X射线、电磁场、超声波等)与人体相互作用,把人体内部组织器官结构、密度以影像方式表现出来,供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学图像处理两方面相对独立的研究方向。

仪器主要包括X光成像仪器、CT(普通CT、螺旋CT)、正子扫描(PET)、超声(分B超、彩色多普勒超声、心脏彩超、三维彩超)、核磁共振成像(MRI)、心电图仪器、脑电图仪器等。

课程设置包括:(1)主干学科:基础医学、临床医学、医学影像学.(2)主要课程:物理学、电子学基础、计算机原理与接口、影像设备结构与维修、医学成像技术、摄影学、人体解剖学、诊断学、内科学、影像诊断学、影像物理、超声诊断、放射诊断、核素诊断、介入放射学、核医学、医学影像解剖学、肿瘤放疗治疗学、B超诊断学。

是原始空间,图像没有做任何变换时就是在原始空间。在这个空间中图像的维度、原点、voxel size等都是不同的,

不同被试的图像之间不具有可比性,计算出来的任何特征都不能进行统计分析,或是用于机器学习。所以必须对所有

被试的图像进行配准标准化到同一个模板上,这样所有被试的维度、原点、voxel size就一样了。使用MNI标准模板,

就表示把图像转换至MNI空间了。一般而言MNI模板是最常用的,研究的比较多。标准空间的图像也是指MNI空间的

图像。Talairach空间和MNI空间的坐标有对应的关系,很多软件都提供这个功能,比如Mricron、REST等。Talairach

解析:脑成像数据主要有DTI、FMRI、3D三种模态。其中,DTI,3DT1是三维数据,FMRI是四维数据。

的国际标准(ISO 12052)。它定义了质量能满足临床需要的可用于数据交换的医学图像格式。DICOM被广泛应用于

放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领

域得到越来越深入广泛的应用。在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。当

前大约有百亿级符合DICOM标准的医学图像用于临床使用。

5. 原子(原子核,电子),原子核(质子,中子)

解析:氢原子模型:电中性的原子含有一个正价的质子与一个负价的电子,被库仑定律束缚于原子核。质子和电子都

是构成物质的基本粒子。任何物质都是由原子构成的,而原子可以看作一个模型:原子核和绕原子核运动的电子。原

子核可以进一步分为质子和中子。电子带负电荷,质量非常小。质子带正电荷,其质量和中子的质量大致相等。 

6. 轨道磁矩和自旋磁矩

解析:在原子中,电子因绕原子核运动而具有轨道磁矩;电子因自旋具有自旋磁矩;原子核、质子、中子以及其它基

本粒子也都具有各自的自旋磁矩。这些对研究原子能级的精细结构,磁场中的塞曼效应以及磁共振等有重要意义,也

表明各种基本粒子具有复杂的结构。

解析:磁化强度(M)是描述磁介质磁化状态的物理量。在国际单位制中,M的单位为安培/米。定义为媒质微小体元

ΔV内的全部分子磁矩矢量和与ΔV之比。即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,如右所示:。

(1)抗磁性物质的磁化强度的大小与外磁场的大小成正比,但是方向与外磁场方向相反。

(2)顺磁性物质的磁化强度的大小与外磁场的大小成正比,而且方向与外磁场方向相同。

(3)结构图像:空间分辨率相对很高。

(4)功能图像:时间分辨率相对很高。

解析:K空间的数据分布实际上是图像空间中数据的二维傅立叶变换结果。K空间中的数据点和图像空间中的数据点并

不是一一对应的。一个K空间中的数据点对应了图像空间中所有数据点的一部分信息。事实上,K空间中的数据正是图

像空间中的数据作二维傅立叶变换的结果,也就是说,我们的“大脑图像”可以被看作是由一系列频率、相位、方向各

异的二维正弦波叠加而成的,而K空间的数据正表示了图像的正弦波组成。因此,为了理解如何从K空间中的数据变换

得到图像空间中的数据,必须首先理解傅立叶变换。 

(1)MRI扫的是大脑的结构图像,也叫T1权重图像。它有着很高的空间分辨率,可以从中看到非常清晰的解剖结

构,也可以从中区分出各种不同的组织。 

(2)fMRI往往用于研究大脑的具体功能,扫出来的是功能图像,也叫做T2*权重图像。虽然它的空间分辨率比较低,

但是时间分辨率很高,可以在很短的时间内扫出一叠功能图像。这样就可以研究实验操作究竟是如何影响大脑的MRI

解析:有氧血红蛋白是抗磁性(Diamagnetic)的,脱氧血红蛋白是顺磁性(Paramagnetic)的。fMRI(T2*权重)

正是利用了血红蛋白在这两种状态下不同的磁性性质,顺磁性的脱氧血红蛋白可以增强MR的原磁场。当它的含量下

降时,BOLD fMRI信号会跟着上升。脱氧血红蛋白上升,会导致信号的下降,因为它会干扰主磁场,导致信号的衰减

14. 现代神经影像学技术

解析:脑电图(EEG);单光子发射体层成像(SPECT);正电子发射型计算机断层显像(PET);功能性磁共振

图(ECoG)。其中应用最为广泛的是fMRI和PET。

解析:Analyze格式储存的每组数据组包含2个文件,一个为数据文件,其扩展名为.img,包含二进制的图像资料;另

外一个为头文件,扩展名为.hdr,包含图像的元数据。在fMRI的早期,Analyze格式最常用的格式,但现在逐渐被

解析:标准NIfTI图像的扩展名是.nii,包含了头文件及图像资料。由于NIfTI格式和Analyze格式的关系,因此NIfTI格式

也可使用独立的图像文件(.img)和头文件(.hdr)。单独的.nii格式文件的优势就是可以用标准的压缩软件(如

gzip),而且一些分析软件包(比如FSL)可以直接读取和写入压缩的.nii文件(扩展名为.nii.gz)。

说明:Nilearn是一个将机器学习、模式识别、多变量分析等技术应用于神经影像数据的应用中,能完成多体素模式分

析(MVPA:Mutli-Voxel Pattern Analysis)、解码、模型预测、构造功能连接、脑区分割、构造连接体等功能。一般

用于处理功能磁共振图像(FMRI)、静息状态(resting-state),或者基于体素的形态学分析(VBM)。对于机器学

习专家来说,Nilearn的价值体现在特定领域特定工程的构造,也就是将神经影像数据表达成为非常适合于统计学习的

18. 可获取的三种磁共振信号

(1)自由感应衰减信号(FID):一般不用FID信号来重建图像,因为信号的较大幅度部分被掩盖在90度射频内;线

圈发射和接受通路之间来不及切换。

(2)自旋回波信号(SE):较为常用的也是最早用以进行磁共振图像重建的信号,只是需要多施加一次1800RF脉

(3)梯度回波信号(GrE):较新的可大大缩减磁共振扫面时间的用以重建图像的信号,又称场回波。

说明:MPRAGE即快速梯度回波成像。

解析:fMRI数据分析之所以复杂是由许多因素造成的:第一,数据容易受到许多伪迹的影响,比如头动。第二,数据

中存在许多变异来源,包括个体间差异以及个体内不同时间的变异。第三,数据的维度很大,对许多惯于分析小型数

据的科学工作者们来说存在许多挑战。fMRI数据分析的主要步骤分别对应于解决上述这些问题。如下所示:

(1)质量控制:确保数据不被伪迹破坏。

(2)扭曲校正:校正fMRI图像经常发生的空间扭曲失真。

(3)头动校正:校正头动,将扫描的时间序列图像重新对准。

(4)层间时间校正:校正图像不同层之间的时间差异。

(5)空间标准化:将不同个体的数据对准到一个通用空间结构上,使得所有数据可以合并进行组分析。

(6)空间平滑:有意模糊数据以降低噪声。

(7)时间过滤:在时间维度上过滤数据,以去除低频噪声。

(8)统计建模:将统计模型拟合到观测数据,以估计任务或刺激引起的响应。

(9)统计推断:估计结果的统计显著性,对在整个大脑中进行的大量统计检验进行校正。

(10)可视化:对结果进行可视化,并估计效应量。

21. 神经元与神经系统

解析:神经元,又称神经原或神经细胞,是构成神经系统结构和功能的基本单位。神经元是具有长突起的细胞,它由

细胞体和细胞突起构成。神经系统是机体内对生理功能活动的调节起主导作用的系统,主要由神经组织组成,分为中

枢神经系统和周围神经系统两大部分。中枢神经系统又包括脑和脊髓,周围神经系统包括脑神经和脊神经。

22. 基于MRI标准坐标空间的三个主要坐标轴示意图

解析:在用于神经成像数据的标准空间中,X代表左/右;Y代表前/后;Z代表上/下。在数据矩阵中,一个特定的体素

可以被标记为[Xvox, Yvox, Zvox],通过这三个维度的坐标就可以确定体素的位置。如下所示:

解析:使用SPM进行数据处理前,必须先将其它档案格式转换成spm可以读取的Analyze档案格式,包含.img档和.hdr

[1] 南方医科大学:

[2] 南方医科大学精品课程"医学影像学":

[4] 西安交通大学精品课程"医学影像学":

[5] 中山大学精品课程"放射诊断学/医学影像学":

[7] 唐都医院放射治疗科学科专业网站:

[8] 天津医科大学医学影像诊断学:

[9] 南方医科大学医学影像学:

[10] 医学影像学:

[11] 医学影像学课程:

[12] 中山大学医学影像学:

[13] 复旦大学医学影像学精品课程:

[15] 杭州师范大学精品课程"医学影像学":

[16] 脑成像数据的格式转换:

}

我要回帖

更多关于 什么是自旋 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信