1.14 求图示电路中的φ1、φ2和φ3的值。

材料科学基础1.作图表示立方晶体的晶面及晶向。2.在六方晶体中,绘出以下常见晶向等。3.写出立方晶体中晶面族100,110,111,112等所包括的等价晶面。4.镁的原子堆积密度和所有hcp金属一样,为0.74。试求镁单位晶胞的体积。已知Mg的密度,相对原子质量为24.31,原子半径r=0.161nm。5.当CN=6时离子半径为0.097nm,试问:1)当CN=4时,其半径为多少?2)当CN=8时,其半径为多少?6.试问:在铜(fcc,a=0.361nm)的方向及铁(bcc,a=0.286nm)的方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为。试确定在镍的(100),(110)及(111)平面上1中各有多少个原子。8.石英的密度为2.65。试问:1)1中有多少个硅原子(与氧原子)?2)当硅与氧的半径分别为0.038nm与0.114nm时,其堆积密度为多少(假设原子是球形的)?9.在800时个原子中有一个原子具有足够能量可在固体内移动,而在900时个原子中则只有一个原子,试求其激活能(J/原子)。10.若将一块铁加热至850,然后快速冷却到20。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J)。11.设图1-18所示的立方晶体的滑移面ABCD平行于晶体的上、下底面。若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量bAB。1)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b,试问这种看法是否正确?为什么?2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。12.设图1-19所示立方晶体中的滑移面ABCD平行于晶体的上、下底面。晶体中有一条位错线段在滑移面上并平行AB,段与滑移面垂直。位错的柏氏矢量b与平行而与垂直。试问:1)欲使段位错在ABCD滑移面上运动而不动,应对晶体施加怎样的应力?2)在上述应力作用下位错线如何运动?晶体外形如何变化?13.设面心立方晶体中的为滑移面,位错滑移后的滑移矢量为。1)在晶胞中画出柏氏矢量b的方向并计算出其大小。2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数。14. 若面心立方晶体中有b=的单位位错及b=的不全位错,此二位错相遇产生位错反应。1)问此反应能否进行?为什么?2)写出合成位错的柏氏矢量,并说明合成位错的类型。16.若已知某晶体中位错密度。1)由实验测得F-R位错源的平均长度为,求位错网络中F-R位错源的数目。2)计算具有这种F-R位错源的镍晶体发生滑移时所需要的切应力。已知Ni的Pa,。17.已知柏氏矢量b=0.25nm,如果对称倾侧晶界的取向差=1及10,求晶界上位错之间的距离。从计算结果可得到什么结论?18. 由n个刃型位错组成亚晶界,其晶界取向差为0.057。设在形成亚晶界之前位错间无交互作用,试问形成亚晶界后,畸变能是原来的多少倍(设形成亚晶界后,)?19. 用位错理论证明小角度晶界的晶界能与位向差的关系为。式中和A为常数。20.简单回答下列各题。1)空间点阵与晶体点阵有何区别?2)金属的3种常见晶体结构中,不能作为一种空间点阵的是哪种结构?3)原子半径与晶体结构有关。当晶体结构的配位数降低时原子半径如何变化?4)在晶体中插入柱状半原子面时能否形成位错环?5)计算位错运动受力的表达式为,其中是指什么?6)位错受力后运动方向处处垂直于位错线,在运动过程中是可变的,晶体作相对滑动的方向应是什么方向?7)位错线上的割阶一般如何形成?8)界面能最低的界面是什么界面?9)“小角度晶界都是由刃型位错排成墙而构成的”这种说法对吗?答案1有关晶面及晶向附图2.1所示。2见附图2.2所示。3 这种看法不正确。在位错环运动移出晶体后,滑移面上、下两部分晶体相对移动的距离是由其柏氏矢量决定的。位错环的柏氏矢量为b,故其相对滑移了一个b的距离。(2) AB为右螺型位错,CD为左螺型位错;BC为正刃型位错,DA为负刃型位错。位错运动移出晶体后滑移方向及滑移量如附图2.3所示。12(。1)应沿滑移面上、下两部分晶体施加一切应力0,的方向应与de位错线平行。(2)在上述切应力作用下,位错线de将向左(或右)移动,即沿着与位错线de垂直的方向(且在滑移面上)移动。在位错线沿滑移面旋转360后,在晶体表面沿柏氏矢量方向产生宽度为一个b的台阶。13(1),其大小为,其方向见附图2.4所示。(2) 位错线方向及指数如附图2.4所示。14(1) 能。几何条件:b前b后;能量条件:b前2b后2(2) 不能。能量条件:b前2b后2,两边能量相等。(3) 不能。几何条件:b前a/6557,b后a/6111,不能满足。(4) 不能。能量条件:b前2a2 b后2(2) b合;该位错为弗兰克不全位错。16(1)假设晶体中位错线互相缠结、互相钉扎,则可能存在的位错源数目个Cm3。(2) Ni1.95107 Pa。17当1,D14 nm;10,D1.4 nm时,即位错之间仅有56个原子间距,此时位错密度太大,说明当角较大时,该模型已不适用。18畸变能是原来的0.75倍 (说明形成亚晶界后,位错能量降低)。19设小角度晶界的结构由刃型位错排列而成,位错间距为D。晶界的能量由位错的能量E构成,设l为位错线的长度,由附图2.5可知,由位错的能量计算可知,取RD (超过D的地方,应力场相互抵消),r0b和b/D代入上式可得:式中20(1)晶体点阵也称晶体结构,是指原子的具体排列;而空间点阵则是忽略了原子的体积,而把它们抽象为纯几何点。(2) 密排六方结构。(3) 原子半径发生收缩。这是因为原子要尽量保持自己所占的体积不变或少变 原子所占体积VA原子的体积(4/3r3+间隙体积,当晶体结构的配位数减小时,即发生间隙体积的增加,若要维持上述方程的平衡,则原子半径必然发生收缩。(4) 不能。因为位错环是通过环内晶体发生滑移、环外晶体不滑移才能形成。(5) 外力在滑移面的滑移方向上的分切应力。(6) 始终是柏氏矢量方向。(7) 位错的交割。(8) 共格界面。(9) 否,扭转晶界就由交叉的同号螺型位错构成。第二章1.说明间隙固熔体与间隙化合物有什么异同。2.有序合金的原子排列有何特点?这种排列和结合键有什么关系?为什么许多有序合金在高温下变成无序?3.已知Cd,Zn,Sn,Sb等元素在Ag中的固熔度(摩尔分数)极限分别为,它们的原子直径分别为0.3042nm,0.314nm,0.316nm,0.3228nm,Ag为0.2883nm。试分析其固熔度(摩尔分数)极限差别的原因,并计算它们在固熔度(摩尔分数)极限时的电子浓度。4.试分析H、N、C、B在Fe和Fe中形成固熔体的类型、存在位置和固溶度(摩尔分数)。各元素的原子半径如下:H为0.046nm,N为0.071nm,C为0.077nm,B为0.091nm,Fe为0.124nm, a=0.2881nm,试计算其密度(Ni的相对原子质量为58.71,Al的相对原子质量为26.98)。6.ZnS的密度为4.1,试由此计算两离子的中心距离。7.碳和氮在Fe中的最大固熔度(摩尔分数)分别为,。已知C、N原子均位于八面体间隙,试分别计算八面体间隙被C、N原子占据的百分数。8.为什么只有置换固熔体的两个组元之间才能无限互溶,而间隙固熔体则不能?9.计算在NaCl内,钠离子的中心与下列各离子中心的距离(设和的半径分别为0.097nm和0.181nm)。1)最近邻的正离子;2) 最近邻的离子;3)次邻近的离子;4)第三邻近的离子;5)最邻近的相同位置。10. 某固熔体中含有氧化镁为,。1) 试问之质量分数为多少?2) 假设MgO的密度为3.6,LiF的密度为2.6,那么该固溶体的密度为多少?11. 非晶形材料的理论强度经计算为G/6G/4,其中G为剪切模量。若=0.25,由其弹性性质试估计玻璃(非晶形材料)的理论强度(已知E=70000Mpa)。12. 一陶瓷绝缘体在烧结后含有1(以容积为准)的孔,其孔长为13.7mm的立方体。若在制造过程中,粉末可以被压成含有24的孔,则模子的尺寸应该是多少?13. 一有机化合物,其成分为,。试写出可能的化合物名称。14. 画出丁醇的4种可能的异构体。20. 试述硅酸盐结构的基本特点和类型。21. 为什么外界温度的急剧变化可以使许多陶瓷器件开裂或破碎?22. 陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊性能。答案1 其比较如附表2.1所示。附表2.1 间隙固溶体与间隙化合物的比较类 别间隙固熔体间隙化合物相 同 点一般都是由过渡族金属与原子半径较小的C,N,H,O,B等非金属元素所组成不同点晶体结构属于固熔体相,保持熔剂的晶格类型属于金属化合物相,形成不同于其组元的新点阵表达式用、等表示用化学分子式MX,M2X等表示机械性能强度、硬度较低,塑性、韧性好高硬度、高熔点,甥性、韧性差2 有序固熔体,其中各组元原子分别占据各自的布拉菲点阵称为分点阵,整个固熔体就是由各组元的分点阵组成的复杂点阵,也叫超点阵或超结构。这种排列和原子之间的结合能(键)有关。结合能愈大,原子愈不容易结合。如果异类原子间结合能小于同类原子间结合能,即EAB (EAA十EBB)/2,则熔质原子呈部分有序或完全有序排列。有序化的推动力是混合能参量(mAB1/2(EAA+EBB)m 0,而有序化的阻力则是组态熵;升温使后者对于自由能的贡献(-TS)增加,达到某个临界温度以后,则紊乱无序的固熔体更为稳定,有序固熔体消失,而变成无序固熔体。3在原子尺寸因素相近的情况下,上述元素在Ag中的固熔度(摩尔分数)受原子价因素的影响,即价电子浓度e/a是决定固熔度(摩尔分数)的一个重要因素。它们的原子价分别为2,3,4,5价,Ag为1价,相应的极限固熔度时的电子浓度可用公式cZA(1一xB)ZBxB计算。式中,ZA,ZB分别为A,B组元的价电子数;xB为B组元的摩尔分数。上述元素在固溶度(摩尔分数)极限时的电子浓度分别为1.43,1.42,1.39,1.31。4-Fe为体心立方点阵,致密度虽然较小,但是它的间隙数目多且分散,因而间隙半径很小:r四=0.291,R0.0361nm;r八0.154,R0.0191nm。H,N,C,B等元素熔人。-Fe中形成间隙固熔体,由于尺寸因素相差很大,所以固熔度(摩尔分数)都很小。例如N在-Fe中的固熔度(摩尔分数)在590时达到最大值,约为WN0.1/l0-2,在室温时降至WN0.001/l0-2;C在-Fe中的固溶度(摩尔分数)在727时达最大值,仅为WC0.02l8/10-2,在室温时降至WC0.006/10-2。所以,可以认为碳原子在室温几乎不熔于-Fe中,微量碳原子仅偏聚在位错等晶体缺陷附近。假若碳原子熔入。-Fe中时,它的位置多在-Fe的八面体间隙中心,因为。-Fe中的八面体间隙是不对称的,形为扁八面体,100方向上间隙半径r0.154R,而在110方向上,r0.633R,当碳原子熔入时只引起一个方向上的点阵畸变。硼原子较大,熔人间隙更为困难,有时部分硼原子以置换方式熔人。氢在-Fe中的固熔度(摩尔分数)也很小,且随温度下降时迅速降低。以上元素在-Fe。中的固熔度(摩尔分数)较大一些。这是因为-Fe具有面心立方点阵,原子堆积致密,间隙数目少,故间隙半径较大:rA0.414,R0.0522nm;r四0.225,R0.0284 nm。故上述原子熔入时均处在八面体间隙的中心。如碳在-Fe中最大固熔度(质量分数)为WC2.1l/10-2;氮在-Fe中的最大固熔度(质量分数)约为WN2.8/10-2。5密度5.97 gcm3。6两离子的中心距离为0.234 nm。7碳原子占据10.2的八面体间隙位置;氮原子占据12.5的八面体间隙位置。8这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量升高。熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。9 (1)0.278 nm;(2)0.393 画出丁醇(C4H9OH)的4种可能的异构体如下:20硅酸盐结构的基本特点:(1)硅酸盐的基本结构单元是Si04四面体,硅原子位于氧原子四面体的间隙中。硅氧之间的结合键不仅是纯离子键,还有相当的共价键成分。(2)每一个氧最多只能被两个Si04四面体所共有。(3)Si04四面体可以是互相孤立地在结构中存在,也可以通过共顶点互相连接。(4)SiO-Si的结合键形成一折线。硅酸盐分成下列几类:(1)含有有限硅氧团的硅酸盐;(2)链状硅酸盐;(3)层状硅酸盐;(4)骨架状硅酸盐。21因为大多数陶瓷主要由晶相和玻璃相组成,这两种相的热膨胀系数相差较大,由高温很快冷却时,每种相的收缩不同,所造成的内应力足以使陶瓷器件开裂或破碎。22陶瓷材料中主要的结合键是离子键及共价键。由于离子键及共价键很强,故陶瓷的抗压强度很高,硬度极高。因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好,耐高温,化学稳定性高。第三章1.试述结晶相变的热力学条件、动力学条件、能量及结构条件。2.如果纯镍凝固时的最大过冷度与其熔点(tm1453)的比值为0.18,试求其凝固驱动力。(H-18075J/mol)3.已知Cu的熔点tm1083,熔化潜热Lm1.88103J/cm3,比表面能1.44105 J/cm3。(1) 试计算Cu在853均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。4.试推导杰克逊(K.A.Jackson)方程5.铸件组织有何特点?6.液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?7.已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。8.欲获得金属玻璃,为什么一般选用液相线很陡,从而有较低共晶温度的二元系?9.比较说明过冷度、临界过冷度、动态过冷度等概念的区别。10.分析纯金属生长形态与温度梯度的关系。11.什么叫临界晶核?它的物理意义及与过冷度的定量关系如何?12.简述纯金属晶体长大的机制。13.试分析单晶体形成的基本条件。14.指出下列概念的错误之处,并改正。(1)所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2)金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。(3)在任何温度下,液体金属中出现的最大结构起伏都是晶胚。(4)在任何温度下,液相中出现的最大结构起伏都是核。(5)所谓临界晶核,就是体系自由能的减少完全补偿表面自由能的增加时的晶胚的大小。(6)在液态金属中,凡是涌现出小于临界晶核半径的晶胚都不能成核,但是只要有足够的能量起伏提供形核功,还是可以成核的。(7)测定某纯金属铸件结晶时的最大过冷度,其实测值与用公式T=0.2Tm计算值基本一致。(8)某些铸件结晶时,由于冷却较快,均匀形核率N1提高,非均匀形核率N2也提高,故总的形核率为N= N1 +N2。(9)若在过冷液体中,外加10 000颗形核剂,则结晶后就可以形成10 000颗晶粒。(10)从非均匀形核功的计算公式A非A均中可以看出,当润湿角00时,非均匀形核的形核功最大。(11)为了生产一批厚薄悬殊的砂型铸件,且要求均匀的晶粒度,则只要在工艺上采取加形核剂就可以满足。(12)非均匀形核总是比均匀形核容易,因为前者是以外加质点为结晶核心,不象后者那样形成界面,而引起自由能的增加。(13)在研究某金属细化晶粒工艺时,主要寻找那些熔点低、且与该金属晶格常数相近的形核剂,其形核的催化效能最高。(14)纯金属生长时,无论液固界面呈粗糙型或者是光滑型,其液相原子都是一个一个地沿着固相面的垂直方向连接上去。(15)无论温度如何分布,常用纯金属生长都是呈树枝状界面。(16)氮化铵和水溶液与纯金属结晶终了时的组织形态一样,前者呈树枝晶,后者也呈树枝晶。(17)人们是无法观察到极纯金属的树枝状生长过程,所以关于树枝状的生长形态仅仅是一种推理。(18)液体纯金属中加入形核剂,其生长形态总是呈树枝状。(19)纯金属结晶时若呈垂直方式长大,其界面时而光滑,时而粗糙,交替生长。(20)从宏观上观察,若液固界面是平直的称为光滑界面结构,若是金属锯齿形的称为粗糙界面结构。(21)纯金属结晶时以树枝状形态生长,或以平面状形态生长,与该金属的熔化熵无关。(22) 金属结晶时,晶体长大所需要的动态过冷度有时还比形核所需要的临界过冷度大。答案1分析结晶相变时系统自由能的变化可知,结晶的热力学条件为G0,才有GB0。即只有过冷,才能使G0。动力学条件为液固界面前沿液体的温度TTm(熔点),即存在动态过冷。由临界晶核形成功A1/3S可知,当形成一个临界晶核时,还有13的表面能必须由液体中的能量起伏来提供。液体中存在的结构起伏,是结晶时产生晶核的基础。因此,结构起伏是结晶过程必须具备的结构条件。2 凝固驱动力G一3253.5 Jmol。3 (1)rk9.03X10-10 m; (2)n=261个。4所谓界面的平衡结构,是指在界面能最小的条件下,界面处于最稳定状态。其问题实质是分析当界面粗糙化时,界面自由能的相对变化。为此,作如下假定:(1) 液、固相的平衡处于恒温条件下;(2) 液、固相在界面附近结构相同;(3) 只考虑组态熵,忽略振动嫡。设N为液、固界面上总原子位置数,固相原子位置数为n,其占据分数为xn/N;界面上空位分数为1一x,空位数为N(1一x)。形成空位引起内能和结构熵的变化,相应引起表面吉布斯自由能的变化为形成N(1一x)个空位所增加的内能由其所断开的固态键数和一对原子的键能的乘积决定。内能的变化为式中与晶体结构有关,称为晶体学因子。其次,求熵变。由熵变的定义式,则有按striling近似式展开,当N很大时,得S一kNxlnx+(1一x)In(1一x)最后,计算液固界面上自由能总的变化,即所以:令:所以:5在铸锭组织中,一般有三层晶区:(1)最外层细晶区。其形成是由于模壁的温度较低,液体的过冷度交大,因此形核率较高。(2)中间为柱状晶区。其形成是由于模壁的温度升高,晶核的成长速率大于晶核的形核率,且沿垂直于模壁风向的散热较为有利。在细晶区中取向有利的晶粒优先生长为柱状晶粒。(3)中心为等轴晶区。其形成是由于模壁温度进一步升高,液体过冷度进一步降低,剩余液体的散热方向性已不明显,处于均匀冷却状态;同时,未熔杂质、破断枝晶等易集中于剩余液体中,这些都促使了等轴晶的形成。应该指出,铸锭的组织并不是都具有3层晶区。由于凝固条件的不同,也会形成在铸锭中只有某一种晶区,或只有某两种晶区。6固态金属熔化时不一定出现过热。如熔化时,液相若与汽相接触,当有少量液体金属在固相表面形成时,就会很快复盖在整个表面(因为液体金属总是润湿同一种固体金属),由附图2.6表面张力平衡可知,而实验指出,说明在熔化时,自由能的变化aG(表面)1010s)才能获得玻璃态。为了在较低的冷速下获得金属玻璃,就应增加液态的稳定性,使其能在较宽的温度范围存在。实验证明,当液相线很陡从而有较低共晶温度时,就能增加液态的稳定性,故选用这样的二元系(如FeB,FeC,hP,FeSi等)。为了改善性能,可以加入一些其他元素(如Ni,Mo,Cr,Co等)。这类金属玻璃可以在10一10s的冷速下获得。9实际结晶温度与理论结晶温度之间的温度差,称为过冷度(TTm一Tn)。它是相变热力学条件所要求的,只有AT0时,才能造成固相的自由能低于液相自由能的条件,液、固相间的自由能差便是结晶的驱动力。过冷液体中,能够形成等于临界晶核半径的晶胚时的过冷度,称为临界过冷度(T*)。显然,当实际过冷度TT*时,才能均匀形核。所以,临界过冷度是形核时所要求的。晶核长大时,要求液固界面前沿液体中有一定的过冷,才能满足(dNdt)F(dNdt)M,这种过冷称为动态过冷度(TkTm一Ti),它是晶体长大的必要条件。10纯金属生长形态是指晶体宏观长大时界面的形貌。界面形貌取决于界面前沿液体中的温度分布。(1)平面状长大:当液体具有正温度梯度时,晶体以平直界面方式推移长大。此时,界面上任何偶然的、小的凸起伸入液体时,都会使其过冷度减小,长大速率降低或停止长大,而被周围部分赶上,因而能保持平直界面的推移。长大中晶体沿平行温度梯度的方向生长,或沿散热的反方向生长,而其他方向的生长则受到抑制。(2) 树枝状长大:当液体具有负温度梯度时,在界面上若形成偶然的凸起伸入前沿液体时,由于前方液体有更大的过冷度,有利于晶体长大和凝固潜热的散失,从而形成枝晶的一次轴。一个枝晶的形成,其潜热使邻近液体温度升高,过冷度降低,因此,类似的枝晶只在相邻一定间距的界面上形成,相互平行分布。在一次枝晶处的温度比枝晶间温度要高,如附图27(a)中所示的AA断面上丁A丁n,这种负温度梯度使一次轴上又长出二次轴分枝,如附图2.7(b)所示。同样,还会产生多次分枝。枝晶生长的最后阶段,由于凝固潜热放出,使枝晶周围的液体温度升高至熔点以上,液体中出现正温度梯度,此时晶体长大依靠平界面方式推进,直至枝晶间隙全部被填满为止。11根据自由能与晶胚半径的变化关系,可以知道半径rrk的晶胚才有可能成核;而rrk的晶胚既可能消失,也可能稳定长大。因此,半径为“的晶胚称为临界晶核。其物理意义是,过冷液体中涌现出来的短程有序的原子团,当其尺寸rrk时,这样的原子团便可成为晶核而长大。临界晶核半径rk,其大小与过冷度有关,则有12晶体长大机制是指晶体微观长大方式,它与液固界面结构有关。具有粗糙界面的物质,因界面上约有50的原子位置空着,这些空位都可接受原子,故液体原子可以单个进入空位,与晶体相连接,界面沿其法线方向垂直推移,呈连续式长大。具有光滑界面的晶体长大,不是单个原子的附着,而是以均匀形核的方式,在晶体学小平面界面上形成一个原子层厚的二维晶核与原界面间形成台阶,单个原子可以在台阶上填充,使二维晶核侧向长大,在该层填满后,则在新的界面上形成新的二维晶核,继续填满,如此反复进行。若晶体的光滑界面存在有螺型位错的露头,则该界面成为螺旋面,并形成永不消失的台阶,原子附着到台阶上使晶体长大。13形成单晶体的基本条件是使液体金属结晶时只产生一个核心(或只有一个核心能够长大)并长大成单晶体。14(1)在冷却曲线上出现的实际结晶温度与熔点之差液-固界面前沿液态中的温度与熔点之差。(2)使体系自由能减小(3)在过冷液体中,液态金属中出现的(4)在一定过冷度(厶了)下(5)就是体系自由能的减少能够补偿23表面自由能(6)不能成核,即便是有足够的能量起伏提供,还是不能成核。(7)测定某纯金属均匀形核时的有效过冷度(8)那么总的形核率NN2。(9)则结晶后就可以形成数万颗晶粒。(10)非均匀形核的形核功最小。(11)则只要在工艺上采取对厚处加快冷却(如加冷铁)就可以满足。(12)因为前者是以外加质点为基底,形核功小(13)主要寻找那些熔点高,且(14)若液固界面呈粗糙型,则其液相原子(15)只有在负温度梯度条件下,常用纯金属(16)结晶终了时的组织形态不同,前者呈树枝晶(枝间是水),后者呈一个个(块状)晶粒。(17)生长过程,但可以通过实验方法,如把正在结晶的金属剩余液体倒掉,或者整体淬火等进行观察,所以关于树枝状生长形态不是一种推理。(18)其生长形态不会发生改变。(19)其界面是粗糙型的。(20)平直的称为粗糙界面结构锯齿形的称为平滑界面结构。(21)因还与液固界面的结构有关,即与该金属的熔化熵有关。(22)增加,但因金属的过冷能力小,故不会超过某一极大值(23)动态过冷度比形核所需要的临界过冷度小。第四章1.在Al-Mg合金中,xMg=0.05,计算该合金中Mg的质量分数(wMg)(已知Mg的相对原子质量为24.31,Al为26.98)。2已知Al-Cu相图中,K0.16,m3.2。若铸件的凝固速率R310-4 cm/s,温度梯度G30/cm,扩散系数D310-5cm2/s,求能保持平面状界面生长的合金中WCu的极值。3证明固溶体合金凝固时,因成分过冷而产生的最大过冷度为:最大过冷度离液固界面的距离为:式中m 液相线斜率;wC0Cu 合金成分;K 平衡分配系数;G 温度梯度;D 扩散系数;R 凝固速率。说明:液体中熔质分布曲线可表示为:4Mg-Ni系的一个共晶反应为:设w1NiC1为亚共晶合金,w2Ni=C2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C1合金中的总量为C2合金中总量的2.5倍,试计算C1和C2的成分。5在图430所示相图中,请指出:(1) 水平线上反应的性质;(2) 各区域的组织组成物;(3) 分析合金I,II的冷却过程;(4) 合金工,II室温时组织组成物的相对量表达式。6根据下列条件画出一个二元系相图,A和B的熔点分别是1000和700,含wB=0.25的合金正好在500完全凝固,它的平衡组织由73.3%的先共晶。和26.7%的(+)共晶组成。而wB0.50的合金在500时的组织由40%的先共晶和60%的(+)共晶组成,并且此合金的总量为50%。7图4-31为Pb-Sb相图。若用铅锑合金制成的轴瓦,要求其组织为在共晶体基体上分布有相对量为5%的(Sb)作为硬质点,试求该合金的成分及硬度(已知(Pb)的硬度为3HB,(Pb)的硬度为30HB)。8参见图4-32 Cu-Zn相图,图中有多少三相平衡,写出它们的反应式。分析含wZn=0.40的Cu-Zn合金平衡结晶过程中主要转变反应式及室温下相组成物与组织组成物。9计算含碳wC=0.04的铁碳合金按亚稳态冷却到室温后,组织中的珠光体、二次渗碳体和莱氏体的相对量;并计算组织组成物珠光体中渗碳体和铁素体、莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量。10根据显微组织分析,一灰口铁内石墨的体积占12%,铁素体的体积占88%,试求Wc为多少(已知石墨的密度G2.2g/cm3,铁素体的密度7.8g/cm3)。11汽车挡泥板应选用高碳钢还是低碳钢来制造?12当800时,(1) Fe-0.002 C的钢内存在哪些相?(2) 写出这些相的成分;(3) 各相所占的分率是多少?13根据Fe-Fe3C相图(见图4-33),(1) 比较wC0.004的合金在铸态和平衡状态下结晶过程和室温组织有何不同;(2) 比较wc0.019的合金在慢冷和铸态下结晶过程和室温组织的不同;(3) 说明不同成分区域铁碳合金的工艺性。14550时有一铝铜合金的固熔体,其成分为xC0.02。此合金先被淬火,然后重新加热到100以便析出。此(CuAl2:)相发展成许多很小的颗粒弥散分布于合金中,致使平均颗粒间距仅为5.0nm。(1) 请问1mm3合金内大约形成多少个颗粒?(2) 如果我们假设100时中的含Cu量可认为是零,试推算每个9颗粒内有多少个铜原子(已知Al的原子半径为0.143 1000g,请提出一种方案,可从该合金内提炼出100g的Ag,且其中的含Cu量wCu0.02(假设液相线和固相线均为直线)。16已知和渗碳体相平衡的-Fe,其固溶度方程为:假设碳在奥氏体中的固熔度方程也类似于此方程,试根据Fe-Fe3C相图写出该方程。17一碳钢在平衡冷却条件下,所得显微组织中,含有50的珠光体和50的铁素体,问:(1) 此合金中含碳质量分数为多少?(2) 若该合金加热到730,在平衡条件下将获得什么组织?(3) 若加热到850,又将得到什么组织?18利用相律判断图4-34所示相图中错误之处。19指出下列概念中错误之处,并更正。(1)固熔体晶粒内存在枝晶偏析,主轴与枝间成分不同,所以整个晶粒不是一个相。(2)尽管固熔体合金的结晶速度很快,但是在凝固的某一个瞬间,A、B组元在液相与固相内的化学位都是相等的。(3)固熔体合金无论平衡或非平衡结晶过程中,液固界面上液相成分沿着液相平均成分线变化;固相成分沿着固相平均成分线变化。(4)在共晶线上利用杠杆定律可以计算出共晶体的相对量。而共晶线属于三相区,所以杠杆定律不仅适用于两相区,也适用于三相区。(5)固熔体合金棒顺序结晶过程中,液固界面推进速度越快,则棒中宏观偏析越严重。(6)将固熔体合金棒反复多次“熔化一凝固”,并采用定向快速凝固的方法,可以有效地提纯金属。(7) 从产生成分过冷的条件可知,合金中熔质浓度越高,成分过冷区域小,越易形成胞状组织。(8)厚薄不均匀的Ni-Cu合金铸件,结晶后薄处易形成树枝状组织,而厚处易形成胞状组织。(9)不平衡结晶条件下,靠近共晶线端点内侧的合金比外侧的合金易于形成离异共晶组织。(10)具有包晶转变的合金,室温时的相组成物为。,其中相均是包晶转变产物。(11)用循环水冷却金属模,有利于获得柱状晶区,以提高铸件的致密性。(12)铁素体与奥氏体的根本区别在于固熔度不同,前者小而后者大。(13)(13)727是铁素体与奥氏体的同素异构转变温度。(14)在Fe-Fe3C系合金中,只有过共析钢的平衡结晶组织中才有二次渗碳体存在。(15)凡是碳钢的平衡结晶过程都具有共析转变,而没有共晶转变;相反,对于铸铁则只有共晶转变而没有共析转变。(16)无论何种成分的碳钢,随着碳含量的增加,组织中铁素体相对量减少,而珠光体相对量增加。(17)含碳wC0.043的共晶白口铁的显微组织中,白色基体为Fe3C,其中包括Fe3CI、Fe3CII、Fe3CIII、Fe3C共析和Fe3C共晶等。(18)观察共析钢的显微组织,发现图中显示渗碳体片层密集程度不同。凡是片层密集处则碳含量偏多,而疏稀处则碳含量偏少。(19)厚薄不均匀的铸件,往往厚处易白口化。因此,对于这种铸件必须多加碳、少加硅。(20)用Ni-Cu合金焊条焊接某合金板料时,发现焊条慢速移动时,焊缝易出现胞状组织,而快速移动时则易于出现树枝状组织。20读出图4-35浓度三角形中,C,D,E,F,G,H各合金点的成分。它们在浓度三角形中所处的位置有什么特点?21.在图4-36的浓度三角形中;(1) 写出点P,R,S的成分;(2) 设有2kg P,4kg R,2kg S,求它们混熔后的液体成分点X;(3) 定出wC0.08,A、B组元浓度之比与S相同的合金成分点Y;(4) 若有2Kg P,问需要多少何种成分的合金Z才能混熔得到6Kg的成分R的合金。答案1. wMg=0.0456。2. 。3.设纯溶剂组元A的熔点为TA,液相线与固相线近似为直线,则离界面距离x处液相线温度TL为: 但在x处液相的实际温度T如附图2.8所示,应为:因为溶质分布而产生的成分过冷为:令,得:将(4)代入(3)得:4. C1合金成分为wMg0.873,wNi0.127;C2合金成分为wMg0.66,wNi0.3685.(1)高温区水平线为包晶线,包晶反应:Lj+kn中温区水平线为共晶线,共晶反应:Ldg+h(2)各区域组织组成物如图430中所示(3)I合金的冷却曲线和结晶过程如附图2.9所示。 12,均匀的液相L。 23匀晶转变,L不断结晶出相。 33,发生包品反应L+。 34,剩余液相继续结晶为。 4,凝固完成,全部为。 45,为单一相,无变化。 56,发生脱溶转变II。室温下的组织为+II。 II合金的冷却曲线和结晶过程如附图2.10所示。 12,均匀的液相L。 23,结晶出初,随温度下降相不断析出,液相不断减少。 33,剩余液相发生共晶转变L+。 34,II,II,室温下的组织为。初+(+)共+II (4)室温时,合金I、II组织组成物的相对量可由杠杆定律求得。合金I: 合金II:第五章1.能否说扩散定律实际上只要一个,而不是两个?2.要想在800下使通过Fe箔的氢气通气量为210-8mol/(m2s),铁箔两侧氢浓度分别为310-6mol/m3和810-8 mol/m3,若D=2.210-6m2/s,试确定:(1) 所需浓度梯度;(2) 所需铁箔厚度3.在硅晶体表明沉积一层硼膜,再在1200下保温使硼向硅晶体中扩散,已知其浓度分布曲线为若M=51010mol/m2,D=410-9m2/s;求距表明8m处硼浓度达到1.71010 mol/m3所需要的时间。4.若将钢在870下渗碳,欲获得与927下渗碳10h相同的渗层厚度需多少时间(忽略927和870下碳的溶解度差异)?若两个温度下都渗10h,渗层厚度相差多少?5.CuAl组成的互扩散偶发生扩散时,标志面会向哪个方向移动?6.设A,B元素原子可形成简单立方点阵固溶体,点阵常数a0.3nm,若A,B原子的跳动频率分别为10-10s-1和10-9s-1,浓度梯度为1032原子/m4,计算A,B原子通过标志界面的通量和标志面移动速度。7.根据无规行走模型证明:扩散距离正比于。8.将一根高碳钢长棒与纯铁棒对焊起来组成扩散偶,试分析其浓度分布曲线随时间的变化规律。9.以空位机制进行扩散时,原子每次跳动一次相当于空位反向跳动一次,并未形成新的空位,而扩散激活能中却包含着空位形成能,此说法是否正确?请给出正确解释。10.间隙扩散计算公式为,为相邻平行晶面的距离,为给定方向的跳动几率,为原子跳动频率;(1)计算间隙原子在面心立方晶体和体心立方晶体的八面体间隙之间跳动的晶面间距与跳动频率;(2)给出扩散系数计算公式(用晶格常数表示);(3)固熔的碳原子在925下,20下,讨论温度对扩散系数的影响。11. 为什么钢铁零件渗碳温度一般要选择相区中进行?若不在相区进行会有什么结果?12. 钢铁渗碳温度一般选择在接近但略低于FeN系共析温度(500),为什么?13.对掺有少量Cd2+的NaCl晶体,在高温下与肖脱基缺陷有关有关的Na+空位数大大高于与Cd2+有关的空位数,所以本征扩散占优势;低温下由于存在Cd2+离子而造成的空位可使Na+离子的扩散加速。试分析一下若减少Cd2+浓度,会使图5-5转折点温度向何方移动?14.三元系发生扩散时,扩散层内能否出现两相共存区域,三相共存区?为什么?15.指出以下概念中的错误。(1)如果固溶体中不存在扩散流,则说明原子没有扩散。(2)因固体原子每次跳动方向是随机的,所以在没有任何扩散情况下扩散通量为零。(3)晶界上原子排列混乱,不存在空位,所以空位机制扩散的原子在晶界处无法扩散。(4)间隙固溶体中溶质浓度越高,则溶质所占的间隙越多,供扩散的空余间隙越少,即z值越小,导致扩散系数下降。(5) 体心立方比面心立方的配位数要小,故由关系式可见,Fe中原子扩散系数要小于Fe中的扩散系数。答案9此说法不正确。固体中的宏观扩散流不是单个原子定向跳动的结果,扩散激活能也不是单个原子迁:移时每一次跳动需越过的能垒,固体中原子的跳动具有随机性质,扩散流是固体中扩散物质质点(如原子,离子)随机跳动的统计结果的宏观体现,当晶体中的扩散以空位机制进行时,晶体中任何一个原子在两个平衡位置之间发生跳动必须同时满足两个条件:(2)该原子具有的能量必须高于某一临界值Gf,即原子跳动激活能,以克服阻碍跳动的阻力;(3)该原子相邻平衡位置上存在空位。根据统计热力学理论,在给定温度T下,晶体中任一原子的能量高于Gf 的几率Pf,即晶体中能量高于Gf的原子所占原子百分数为而晶体中的平衡空位浓度Cv,即任一原子平衡位置出现空位的几率Pv,为显然,某一瞬间晶体中原子发生一次跳动的几率为P也等于该瞬间发生跳动原子所占的原子百分数。其中QGfGv,就是空位扩散机制的扩散激活能。11因-Fe中的最大碳熔解度(质量分数)只有0.0218,对于含碳质量分数大于0.0218的钢铁在渗碳时零件中的碳浓度梯度为零,渗碳无法进行,即使是纯铁,在相区渗碳时铁中浓度梯度很小,在表也不能获得高含碳层;另外,由于温度低,扩散系数也很小,渗碳过程极慢,没有实际意义。-Fe中的碳固溶度高,渗碳时在表层可获得较高的碳浓度梯度使渗碳顺利进行。12原因是。-Fe中的扩散系数较-Fe中的扩散系数高。13转折点向低温方向移动。14三元系扩散层内不可能存在三相共存区,但可以存在两相共存区。原因如下:三元系中若出现三相平衡共存,其二相中成分一定且不同相中同一组分的化学位相等,化学位梯度为零,扩散不可能发生。三元系在两相共存时,由于自由度数为2,在温度一定时,其组成相的成分可以发生变化,使两相中相同组元的原子化学位平衡受到破坏,引起扩散。15(1) 固体中即使不存在宏观扩散流,但由于原子热振动的迁移跳跃,扩散仍然存在。纯物质中的自扩散即是一个典型例证。(2)原子每次跳动方向是随机的。只有当系统处于热平衡状态,原子在任一跳动方向上的跳动几率才是相等的。此时虽存在原子的迁移(即扩散),但没有宏观扩散流。如果系统处于非平衡状态,系统中必然存在热力学势的梯度(具体可表示为浓度梯度、化学位梯度、应变能梯度等)。原子在热力学势减少的方向上的跳动几率将大于在热力学势增大方向上的跳动几率。于是就出现了宏观扩散流。(3)晶界上原子排列混乱,与非晶体相类似,其原子堆积密集程度远不及晶粒内部,因而对原子的约束能力较弱,晶界原子的能量及振动频率明显高于晶内原子。所以晶界处原子具有更高的迁移能力。晶界扩散系数也罢明显鬲于晶内扩散系数。(4)事实上这种情况不可能出现。间隙固熔体的熔质原子固熔度十分有限。即使是达到过饱合状态,溶质原子数目要比晶体中的间隙总数要小几个数量级,因此,在间隙原子周围的间隙位置可看成都是空的。即对于给定晶体结构,z为一个常数。(5)虽然体心立方晶体的配位数小,但其属于非密堆结构。与密堆结构的面心立方晶体相比较,公式中的相关系数f值相差不大(0.72和0.78),但原子间距大,原子因约束力小而振动频率高,其作用远大于配位数的影响。而且原子迁移所要克服的阻力也小,具体表现为扩散激活能低,扩散常数较大,实际情况是在同一温度下-Fe有更高的自扩散系数,而且熔质原子在。-Fe中的扩散系数要比-Fe高。第六章1锌单晶体试样的截面积A78.5 mmz,经拉伸试验测得有关数据如表6-1所示。试回答下列问题:(1)根据表6-1中每一种拉伸条件的数据求出临界分切应力k,分析有无规律。(2)求各屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。表6-1 锌单晶体拉伸试验测得的数据屈服载荷N/( ).530.517.65/( )25..882.52低碳钢的屈服点与晶粒直径d的关系如表6-2中的数据所示,d与,是否符合霍尔配奇公式?试用最小二乘法求出霍尔配奇公式中的常数。表6-2 低碳钢屈服极限与晶粒直径d/mms/(kPa)453拉伸铜单晶体时,若拉力轴的方向为001,106Pa。求(111)面上柏氏矢量b=的螺型位错线上所受的力(aCu0.36nm)。4给出位错运动的点阵阻力与晶体结构的关系式。说明为什么晶体滑移通常发生在原子最密排的晶面和晶向。5对于面心立方晶体来说,一般要有5个独立的滑移系才能进行滑移。这种结论是否正确?请说明原因及此结论适用的条件。6什么是单滑移、多滑移、交滑移?三者滑移线的形貌各有何特征?7已知纯铜的111滑移系的临界切应力rc为1 MPa,问;(1)要使()面上产生101)方向的滑移,则在001方向上应施加多大的应力?(2) 要使()面上产生110方向的滑移呢?8证明体心立方金属产生孪生变形时,孪晶面沿孪生方向的切应变为0.707。9试比较晶体滑移和孪生变形的异同点。10 用金相分析如何区分“滑移带”、“机械孪晶”、“退火孪晶”。11 试用位错理论解释低碳钢的屈服。举例说明吕德斯带对工业生产的影响及防止办法。12 纤维组织及织构是怎样形成的?它们有何不同?对金属的性能有什么影响?13 简要分析加工硬化、细晶强化、固熔强化及弥散强化在本质上有何异同。14 钨丝中气泡密度(单位面积内的气泡个数)由100个/cm2增至400个/cm2时,拉伸强度可以提高1倍左右,这是因为气泡可以阻碍位错运动。试分析气泡阻碍位错运动的机制和确定切应力的增值r。15陶瓷晶体塑性变形有何特点?16为什么陶瓷实际的抗拉强度低于理论的屈服强度,而陶瓷的压缩强度总是高于抗拉17 强度?18已知烧结氧化铝的孔隙度为5时,其弹性模量为370 GPa,若另一烧结氧化铝的弹性模量为270 GPa,试求其孔隙度。19为什么高聚物在冷拉过程中细颈截面积保持基本不变?将已冷拉高聚物加热到它的玻理化转变温度以上时,冷拉中产生的形变是否能回复?20银纹与裂纹有什么区别?答案1(1)临界分切应力n及取向因子数据如附表2.3所示。以上数据表明,实验结果符合临界分切应力定律km。(2)屈服应力s与取向因子,m之间的关系如附图2.17所示。6单滑移是指只有一个滑移系进行滑移。滑移线呈一系列彼此平行的直线。这是因为单滑移仅有一组多滑移是指有两组或两组以上的不同滑移系同时或交替地进行滑移。它们的滑移线或者平行,或者相交成一定角度。这是因为一定的晶体结构中具有一定的滑移系,而这些滑移系的滑移面之间及滑移方向之间都交滑移是指两个或两个以上的滑移面沿共同的滑移方向同时或交替地滑移。它们的滑移线通常为折线或波纹状。只是螺位错在不同的滑移面上反复“扩展”的结果。10滑移带一般不穿越晶界。如果没有多滑移时,以平行直线和波纹线出现,如附图2.19(a),它可以通过抛光而去除。机械孪晶也在晶粒内,因为它在滑移难以进行时发生,而当孪生使晶体转动后,又可使晶

}

打开网易新闻 查看精彩图片

是从外部或内部切入工件的螺旋线。螺纹的主要功能是:

1、通过组合内螺纹产品和外螺纹产品形成机械连接。

2、通过将旋转运动转换为线性运动传递运动,反之亦然。

螺纹牙型确定螺纹的几何形状,包括工件直径 (大径、中径和小径);螺纹牙型角;螺距和螺旋角。

①牙底:连接两个相邻螺纹牙侧的底部表面。

②牙侧:连接牙顶和牙底的螺纹侧表面。

③牙顶:连接两个牙侧的顶部表面。

螺纹的有效直径。大约在大径和小径之间一半的位置处。

打开网易新闻 查看精彩图片

螺纹的几何形状基于螺纹中径 (d, D) 和螺距 (P):工件上沿着螺纹从牙型上的一点到相应的下一点的轴向距离。这也可以看作是从工件绕开的一个三角形。

打开网易新闻 查看精彩图片

打开网易新闻 查看精彩图片

一、60°牙型的外螺纹中径计算及公差(国标GB197/196)

螺纹中径的基本尺寸=螺纹大径-螺距×系数值。

a.6H级螺纹中径公差(以螺距为基准)

上限值计算公式2+TD2即基本尺寸+公差。

b.内螺纹的中径基本尺寸计算公式与外螺纹相同

即D2=D-P×0.6495即内螺纹中径等于螺纹大径-螺距×系数值。

c.6G级螺纹中径基本偏差E1(以螺距为基准)

三、外螺纹大径的计算及公差(GB197/196)

a.外螺纹的6h大径上限值

即螺纹直径值例M8为φ8.00上限值公差为”0”。

b.外螺纹的6h级大径下限值公差(以螺距为基准)

大径下限计算公式:d-Td即螺纹大径基本尺寸-公差。

四、内螺纹小径的计算与公差

a.内螺纹小径的基本尺寸计算(D1)

螺纹小径基本尺寸=内螺纹基本尺寸-螺距×系数

五、分度头单分度法计算公式

单分度法计算公式:n=40/Z

n:为分度头应转过的转数

六、圆内接六方形的计算公式

①圆D求六方对边(S面)

②六方对边(S面)求圆(D)直径

七、冷镦工序的六方对边与对角计算公式

①外六角对边(S)求对角e

②内六角对边(s)求对角(e)

③外六角对边(s)求对角(D)的头部用料直径

应按(六中的第二个公式)六方对边(s面)求圆(D)直径并适量加大其偏移中心值即D≥1.1547s偏移中心量只能估算。

八、圆内接四方形的计算公式

①圆(D)求四方形对边(S面)

②四方对边(S面)求圆(D)

九、工序的四方对边与对角的计算公式

①外四方对边(S)求对角(e)

②内四方对边(s)求对角(e)

十、六方体体积的计算公式

十一、圆台(圆锥)体的体积计算公式

0.262H(D2+d2+D×d)即0.262×高度×(大头直径×大头直径+小头直径×小头直径+大头直径×小头直径)。

十二、球缺体(例如半圆头)的体积计算公式

十三、内螺纹用丝锥的加工尺寸计算公式

1.丝锥大径D0的计算

注:0.5至1.3的多少选择应根据螺距的大小来确认,螺距值越大则应采用小一点系数,反之,螺距值越小而相应采用大一点系数。

2.丝锥中径(D2)的计算

3.丝锥小径(D1)的计算

十四、各种形状冷镦成型用料长度计算公式

计算时将需要用料的体积X÷直径÷直径÷0.7854或X÷半径÷半径÷3.1416即为投料的长度。

式中的X表示需要用料体积数值;

L表示实际投料的长度数值;

R/d表示实际投料的半径或直径。

}

《机械设计基础》作业答案

第一章 平面机构的自由度和速度分析

1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。

1-14:求出题1-14图正切机构的全部瞬心。设,求构件3的速度。

1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接

。触,试用瞬心法求轮1与轮2的角速度比

构件1、2的瞬心为P12

P24、P14分别为构件2与构件1相对于机架的绝对瞬心

1-16:题1-16图所示曲柄滑块机构,已知:,求机构全部瞬心、滑块速度,和连杆角速度

。,在三角形ABC中,,,1-17:题1-17图所示平底摆动从动件凸轮1为半径,求的数值和方向。的圆盘,圆盘中心C与凸轮和

时,从动件回转中心的距离,角速度

2-1 试根据题2-1图所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构还是双摇杆机构。

2-3 画出题2-3图所示各机构的传动角和压力角。图中标注箭头的构件为原动件。

2-4 已知某曲柄摇杆机构的曲柄匀速转动,极位夹角θ为300,摇杆工作行程需时7s。试问:(1)摇杆空回程需时几秒?(2)曲柄每分钟转数是多少? 解:(1)根据题已知条件可得:

摇杆工作行程用时7s,则可得到空回程需时:

(2)由前计算可知,曲柄每转一周需时12s,则曲柄每分钟的转数为

2-5 设计一脚踏轧棉机的曲柄摇杆机构,如题2-5图所示,要求踏板CD在水平位置上0下各摆10,且。(1)试用图解法求曲柄AB和连杆BC的长度;(2)用式(2-6)和式(2-6)'计算此机构的最小传动角。解:

以踏板为主动件,所以最小传动角为0度。

2-6 设计一曲柄摇杆机构。已知摇杆长度,摆角,摇杆的行程速比变化系数。(1)用图解法确定其余三杆的尺寸;(2)用式(2-6)和式(2-6)'确定机构最小传动角计)。

解:由K=1.2可得极位夹角

(若,则应另选铰链A的位置,重新设

2-7 设计一曲柄滑块机构,如题2-7图所示。已知滑块的行程,行程速度变化系数,求曲柄和连杆的长度。,偏距解:由K=1.2可得极位夹角

2-8 设计一摆动导杆机构。已知机架长度求曲柄长度。

解:由K=1.4可得极位夹角,行程速度变化系数,2-10 设计一铰链四杆机构作为加热炉炉门的起闭机构。已知炉门上两活动铰链的中心距为50mm,炉门打开后成水平位置时,要求炉门温度较低的一面朝上(如虚线所示),设固定铰链安装在yy轴线上,其相关尺寸如题图2-10图所示,求此铰链四杆机构其余三杆的长度。

已知某操纵装置采用铰链四杆机构。要求两连架杆的对应位置如题2-12图所示,;,;,;机架长度,试用解析法求其余三杆长度。

解:由书35页图2-31可建立如下方程组:

分别把两连架杆的三个对应转角带入上式,可得到关于P1、P2、P3由三个方程组成的方程组。可解得:,再由(1)、(2)、(3),可解得:

3-1 题3-1图所示为一偏置直动从动件盘形凸轮机构,已知AB段为凸轮的推程廓线,试在图上标注推程运动角Φ。

3-2题3-2图所示为一偏置直动从动件盘形凸轮机构,已知凸轮是一个以C点为圆心的圆盘,试求轮廓上D点与尖顶接触是的压力角,并作图表示。

3-4 设计题3-4图所示偏置从动件盘形凸轮。已知凸轮以等角速度顺时针方向回转,偏距,凸轮基圆半径,滚子半径,从动件的升程,,,从动件在升程和回程均作简谐运动,试用图解法绘制出凸轮的轮廓并校核推程压力角。解:(1)推程: 推程角:

(2)回程: 回程角:

从动件的位移方程:00

于是可以作出如下的凸轮的理论轮廓曲线,再作一系列的滚子,绘制内包络线,就得到凸轮的实际轮廓曲线(略)

6、3-7依次按上述步骤进行作图即可,不同的是:3-6为一摆动从动件盘形凸轮机构,3-7为一平底直动从动件盘形凸轮机构。

4-1 已知一对外啮合正常齿制标准直齿圆柱齿轮,,试计算这对齿轮的分度圆直径、齿顶高、齿跟高、顶隙、中心距、齿顶圆直径、齿跟圆直径、基圆直径、齿距、齿厚和齿槽宽。解:

4-2 已知一对外啮合标准直齿圆柱齿轮的标准中心距,求模数和分度圆直径。

4-3已知一正常齿制标准直齿圆柱齿轮的齿数该轮的模数。解:

正常齿制标准直齿圆柱齿轮:则有,齿顶圆直径,求

4-4 已知一正常齿制标准直齿圆柱齿轮,圆、齿顶圆上渐开线的曲率半径和压力角。,试分别求出分度圆、基解:

分度圆上齿廓曲率半径:

齿顶圆上齿廓曲率半径:

4-6 已知一对内啮合正常齿制标准直齿圆柱齿轮,,试参照图4-1b计算该对齿轮的中心距和内齿轮的分度圆直径、齿顶圆直径和齿跟圆直径。

解:该对齿轮为内啮合,所以有 中心距齿轮2为内齿轮,所以有

4-10 试与标准齿轮相比较,说明正变位直齿圆柱齿轮的下列参数:、解: 不变的参数、、、、、、、、,哪些不变?哪些起了变化?变大还是变小?、、、变化 增大、、、、减小,,试计4-11 已知一对正常齿渐开线标准斜齿圆柱齿轮算其螺旋角、端面模数、分度圆直径和齿跟圆直径。

解:对外啮合的斜齿轮中心距为

mm 齿顶圆直径分别为

mm mm 齿跟圆直径分别为

5-1 在题5-1图所示双级蜗轮传动中,已知右旋蜗杆1的转向如图所示,试判断蜗轮2和蜗轮3的转向,用箭头表示。

5-2 在题5-2图所示轮系中,已知,(右旋),线速度的大小和方向。,,若,,求齿条6

5-3 在题5-3图所示钟表传动示意图中,E为擒纵轮,N为发条盘,S、M、H分别为秒针、分针、时针。设,时针的传动比。,,,,,求秒针与分针的传动比和分针与

注意各轮转速之间的关系:

5-6 在题5-6图所示液压回转台的传动机构中,已知,液压马达M的转速,回转台H的转速,求齿轮1的齿数(提示:)。

5-9 在题5-9图所示差动轮系中,已知各轮的齿数,,齿轮1的转速为

(箭头向上),齿轮3的转速为头向下),求行星架转速的大小和方向。

解:在转化轮系中,各轮的转向如图中虚线箭头所示,则有

在图中,从给定的条件可知,轮1和轮3的绝对转向相反,已的值为正,的值为负,代入上式中,则有

其值为正,说明H的转向与轮1的转向相同。5-10 在题5-10图所示机构中,已知,,,求:

(1)当、时,(2)当时,(3)当、时,,解:该轮系为一复合(混合)轮系(1)有1、2、3构成定轴轮系,则有

(2)由3(H)、4、5、6、7构成周转轮系 易知

①当②当③当,时,时,时,第七章 机械运转速度波动的调节

7-2 在电动机驱动的剪床中,已知作用在剪床主轴上的阻力矩的变化规律如题7-2图所示。设驱动力矩等于常数,剪床主轴转速为,机械运转速度不均匀系数。求:(1)驱动力矩的数值;(2)安装在主轴上的飞轮转动惯量。

解:(1)按一个周期中(一运动循环)阻力矩和驱动力矩做功相等,有

(2)分三个区间 第一区间盈功:

7-3 为什么本章介绍的飞轮设计方法称为近似方法?试说明哪些因素影响飞轮设计的精确性。

解:因在本章所讨论的飞轮设计中,用的是算术平均值代替的实际平均值,对速度不均匀系数的选择也只是在它的容许范围内选择,还有,在计算时忽略了其他构件的转动惯量,也忽略了其他构件的动能影响。所以是近似计算。

7-5 设某机组发动机供给的驱动力矩(即驱动力矩与瞬时角速度成反比),阻力矩在变化如题7-5图所示,,若忽略其他构件的转动惯量,求

状态下飞轮的转动惯量。

8-1 某汽轮机转子质量为1t,由于材质不均匀及叶片安装误差致使质心偏离回转轴线0.5mm,当该转子以5000r/min的转速转动时,其离心力有多大?离心力是它本身重力的几倍? 解:离心力为:

8-4 如图所示盘形回转件,经静平衡试验得知,其不平衡质径积方向沿和。由于结构限制,不允许在与方向各加一个质径积来进行平衡。求

等于,相反方向上加平衡质量,只允许在解:依题意可得:

8-5 如图所示盘形回转件上有4个偏置质量,已知,,,,设所有不平衡质量分布在同一回转面内,问应在什么方位、加多大的平衡质径积才能达到平衡?

解:各偏心质量产生的质径积分别为:

于是不平衡质径积的向量和为:

即应在图示反方向的方位加上质径积,回转件才能达到平衡。

第10章 连接 10-4 解:设螺旋副的升角为,当量摩擦角为,当量摩擦系数用

则 已知,则,(1)工作台上升的效率为

(2)稳定上升时加于螺杆上的力矩为

(4)工作台在制动装置。作用下等速下降,因,该螺旋副不具有自锁性,所以需要加于螺杆上的制动力矩为:

由题意知,因F作用而在轴上产生的摩擦力矩应与W作用而在轴上产生的力矩平衡,即有

则每个螺栓所受的轴向力为

螺栓的力学性能等级为4.8级,查表10-5,查表10-7,则

代入试(10-12)有

暂取螺柱个数为12,性能等级为5.8级(已知)查表10-5 查表10-7

所以,选择正确。10-14 解:选择平键连接,由图中所示轴孔直径可知,与之相装配的轴径也为结合轮毂长度尺寸84,可由表10-9查得需要选择的键为:

键16×80 GB/T 同时可查得键的厚度尺寸,然后根据题10-8中传递的转矩,利用公式(10-26)及表10-10进行验算强度即可

解:利用题中给定的条件可推导出:

解:本题为设计计算题,按照例题的步骤进行计算即可。11-6

解:(1);(2);(3);(4)

要使中间轴上两轴向力相互抵消,则应有:

且知轮2和轮3所传递的转矩相等,设都为T,则

机械设计基础复习要点(第一部分)

掌握:机器的特征:人为的实体组合、各实体间具有确定的相对运动、实现机械能与其他形式能之间的转换或作机械功

了解:机器、机构、机械、常用机构、通用零件、专用零件和部件的概念

机械设计的基本要求和程序

第3章 机构运动设计与分析基础知识

3.1 掌握:机构的组成要素:构件与运动副

3.2 掌握:构件的定义、构件与零件的区别

平面运动副的定义、分类(转动副、移动副、平面滚滑副),各运动副的运动特征、几何特征、表示符号及位置

3.3 掌握:机构运动简图的画法

3.4 掌握:平面机构自由度的计算公式、应用公式时的注意事项、机构具有确定运动的条件

3.5 掌握: 速度瞬心定义:绝对瞬心、相对瞬心速度瞬心求法:数目、观察法、三心定理

6.1 掌握:平面连杆机构的组成6.2 掌握:铰链四杆机构的分类,铰链四杆机构的变异方法

6.3 掌握:铰链四杆机构的特性:曲柄存在条件、曲柄摇杆机构的极限位置、曲柄摇杆机构的极位夹角、曲柄摇杆机构的急回特性及行程速比系数;压力角、传动角、许用传动角;曲柄摇杆机构最小传动角位置;死点位置;死点位置的应用和渡过

6.4 掌握:平面连杆机构的运动设计:实现给定连杆二个或三个位置的设计;实现给定行程速比系数的四杆机构设计

7.1 掌握:凸轮机构的组成7.2 掌握:凸轮机构的类型(凸轮、从动件、锁合装置)

7.3 掌握:基圆(理论廓线上最小向径所作的圆)、理论廓线、实际廓线、行程、推程、回程、远休止、近休止、刚性冲击、柔性冲击;三种运动规律(等速、等加速等减速、余弦加速度)特点和位移曲线的画法

7.4 掌握:反转法绘制凸轮廓线的方法(对心或偏置尖端移动从动件、对心或偏置滚子移动从动件)

7.5 掌握:滚子半径的选择、运动失真的解决方法;压力角、许用压力角;基圆半径的确定

8.2 掌握:齿廓啮合基本定律;定传动比条件、节点、节圆、共轭齿廓

8.3 掌握:渐开线的形成、特点及方程;一对渐开线齿廓啮合特性:

定传动比、可分性、一对渐开线齿廓啮合时啮合角、啮合线保持不变

8.4 掌握:渐开线齿轮各部分名称:基本参数:齿数、模数、压力角、齿顶高系数、顶隙系数;渐开线标准圆柱直齿轮尺寸计算公式;标准中心距

一对渐开线齿轮啮合条件:正确啮合条件、连续传动条件;重合度的定义及几何含义、一对渐开线齿轮啮合过程:起始啮合点、终止啮合点、实际啮合线、理论啮合线

8.5 了解:范成法加工齿轮的特点、根切现象及产生的原因、不根切的最少齿数;变位齿轮的概念

8.6 掌握:齿轮传动的失效形式及防止失效的措施;齿轮传动的设计准则;齿轮材料的选择原则;

8.7 掌握:齿轮传动的计算载荷中四个系数的含义及其主要影响因素、改善措施:

8.8 直齿圆柱齿轮的强度计算:受力分析(圆周力、径向力);强度计算力学模型(弯曲:悬臂梁;接触:赫兹);强度计算的主要系数的意义及影响因素(强度计算公式不需要记,考试时若需要会给出);直齿圆柱齿轮的设计计算路线(软齿面、硬齿面);设计参数(齿数、齿宽系数、齿数比等)的选择

掌握: 轮系的定义及分类;定轴轮系传动比计算,包括转向判定:

周转轮系传动比计算;混合轮系传动比计算

1课程定位机械设计基础课程标准

本课程是机械机械类专业的一门专业基础课。

通过本课程的学习,使学生掌握基本的工程计算与简单机械零部件的设计,并初步具有分析、解决实际工程问题的能力,为后续专业课的学习打下了良好的基础,使学生具有机械设计的初步能力和为专业学习起到承前启后的作用。通过本课程各知识模块的学习和能力项目的训练,使学生在课程单项实验实训基础上对学生进行综合性、系统性的强化学习和训练,特别强调专业基础理论和技能的学习,既提高了学生的机械设计和创新能力,又培养学生工作适应能力、团队协作精神;培养良好的工程技术人员职业道德、实事求是的科学态度。本课程是在学生学完《机械制图》、《工程力学》、《工程材料》等课程和完成认识实习、课程单项实训后开设的一门基础课程。学生在学习本课程前,须掌握机械制图和机械CAD的基础知识,了解金属材料特性及热处理常识。具有机械制图和工程图纸识别的基本能力;该课程将为后续专业课程的学习打下良好的专业技术基础。《机械设计基础》课程通过设计工作整体过程的岗位综合训练,将学生按课程顺序和教学环节进度分散掌握的知识、能力、素质贯穿起来,并将职业能力和岗位技能有机联系,让学生到企业顶岗实习之前就有一个对真实机械设计工作环境的全面了解和对技能的综合训练。通过这一综合实训,让学生对前期学习成果进行一次综合、总结和提升,为进入企业顶岗实习和零距离上岗奠定基础。2工作任务和课程目标

2.1工作任务及职业能力

工作任务与职业能力分析表工作领 域工作任务职业能力学习项目 能对不太复杂的机械设备进行改 机械设

开发造和设计;能根据产品功能及性能要求正确设计和选用传动系统与联接控制部件并对其试制与安装过程进行技 术指导

护维修、产品售后服务具有机械的故障分析和排除能常用机构设计联接件设计传动件设计轴系零部件设计常用机构设计力;具有机械产品及主要部件的安装、联接件设计调试、运行管理与维护能力传动件设计 轴系零部件设计 2.2课程目标

学生通过本课程的学习,能够达到如下具体目标:(1)知识目标

基于工作岗位的能力要求,根据我校的办学定位和高职学生“理论教学以应用理论为主、突出操作能力和职业素养培养”的实际,本课程知识目标应使学生明确机械设计基础在机械专业职业能力培养中的地位和作用,加深知识的理解和综合运用。

1)了解本课程的应用领域;

2)掌握常用机构的工作原理、特性及应用,掌握通用机械零部件设计 创新基础知识;

3)掌握常用联接机构的工作特性,掌握机械安装、维护工艺技术规程; 4)掌握各种传动的工作原理和机构工作特点; 5)了解现代创新理念和设计创新思想;(2)技能目标

1)具有在设计过程中,运用所学理论知识分析解决机械工程力学与材 料力学相关问题的能力;

2)具有机械传动系统的机构分析、设计创新和排除故障能力; 3)具有生产机械的安装、调试、运行管理与维护能力; 4)能对常用机构、通用部件进行改进和优化设计;

5)能根据矿山工程实际,正确设计、选用和拆装常用矿山机械及其零 部件,并能够对其进行改进和优化设计;

6)具有一定的工装与工艺设计、工程应用的能力; 7)初步具有机械产品的设计开发与应用创新的能力。8)具有自主学习能力和自我发展能力;

9)具有一定的质疑能力,信息收集和处理能力,分析、解决问题能力 和交流、合作能力;

10)能自觉评价学习效果,找到适合自己的学习方法和策略; 11)具有开拓创新的思维能力。(3)态度目标

通过工程案例分析、项目驱动教学、现场体验等实践教学培养学生 1)遵守有关法律、法规、国家标准及有关规定; 2)爱岗敬业,具有高度的责任心;

3)严格执行工作程序、工作规范、工艺文件和安全操作规程; 4)工作认真负责,培养团结协作和环境适应能力; 5)培养应变能力和创新能力;

6)着装整洁,符合规定,保持工作环境清洁有序,文明生产;

7)关心国内外科技发展现状与趋势,有振兴中华的使命感与责任感,有将技术服务于人类的意识。3教学组织

根据工作任务与职业能力分析,为使学生会干机械装置的设计工作,本课程设计了四个学习项目,在项目的教学实施中,进一步分解成十一个学习型工作任务。教学组织表学习项 目编号

1常用机构设计1.常用机器和机构功能认 识

2.自由度与19学习项目名称学习型工作任务学时 机构运动简图 3.连杆机构设计 4.凸轮机构设计 5.其它常用机构 3联接件设计传动件设计1.螺纹连接1.带传动与链传动的设计 2.齿轮传动设计

4轴系零部件设计1.轴承选择及轴承组合设 计

2.轴的设计及轴毂连接 3.联轴器、离合器选择 考核

合计教学内容与能力要求 常用机构设计4.1项目一

(1)项目概述:常用机构设计、19学时,分为5个学习型工作任务:常用机器和机构功能认识;自由度计算与机构运动简图绘制;连杆机构设计;凸轮机构设计;其它常用机构。(2)项目的任务

1)常用机器和机构功能认识 2)自由度与机构运动简图 3)连杆机构设计 4)凸轮机构设计 5)其它常用机构(3)教学目标

了解本课程学习对象、内容,增强感性认识;机械零件的常用材料与结构工艺性。

理解机械零件的失效形式及设计计算准则。掌握机器的组成及特征。

理解平面机构、运动副、自由度等基本概念。

掌握机构运动简图绘制的基本方法和自由度的计算。掌握机构具有确定运动的条件

了解四杆机构的类型、演化及变换,理解曲柄存在的条件。

理解四杆机构的极位夹角、行程速比系数、传动角、压力角、及死点的概念。掌握图解法设计四杆机构。

了解凸轮机构的组成、类型及应用。

理解从动件常用运动规律,掌握位移曲线的绘制。掌握图解法设计凸轮轮廓曲线的方法。理解基圆半径、滚子半径确定的基本原则。了解其它常用机构 2)技能目标

具有判别机械类型的能力。

具有阅读、绘制一般机构运动简图的能力

能正确判断四杆机构的类型;能用作图法按给定的运动规律设计四杆机构。能够用反转法设计盘形凸轮轮廓 3)态度目标

遵守有关法律、法规、国家标准及有关规定; 爱岗敬业,具有高度的责任心;

严格执行工作程序、工作规范、工艺文件和安全操作规程; 工作认真负责,培养团结协作和环境适应能力; 培养应变能力和创新能力;

着装整洁,符合规定,保持工作环境清洁有序,文明生产;

以内燃机为对象引入教学内容(5)项目教学内容

通过参观和多媒体课件展示,进行机械类别特征学习,运动简图绘制,设计内燃机的凸轮机构,曲柄滑块机构。(6)工作方法

参观,讲授,讨论,动手设计。

(7)工作成果 设计计算文件(8)考核评价

对设计成果进行评价并计入项目成绩 4.2项目二联接件设计(1)项目概述

联接件设计、6学时,分为1个学习型工作任务:螺纹及螺纹联结知识,联结结构、强度计算。(2)项目的任务 螺纹连接设计

(3)教学目标: 1)知识目标

了解螺纹的主要参数,螺纹的预紧、防松。理解螺纹联接的主要类型及应用。掌握螺纹联接强度计算方法。2)技能目标

能进行螺纹连接的结构设计和强度计算 3)态度目标

遵守有关法律、法规、国家标准及有关规定;

爱岗敬业,具有高度的责任心;

严格执行工作程序、工作规范、工艺文件和安全操作规程; 工作认真负责,培养团结协作和环境适应能力; 培养应变能力和创新能力;

着装整洁,符合规定,保持工作环境清洁有序,文明生产;(4)项目的教学实施:

以减速器引入螺纹连接结构设计和强度计算(5)项目教学内容

螺纹连接的基本知识和设计(6)工作方法

课件演示减速器,引入螺纹连接。(7)工作成果 设计连接结构

对设计成果进行评价并计入项目成绩 4.3项目三传动件设计

(1)项目概述:传动件设计、学时26,分为2个学习型工作任务:带传动与链传动设计;直齿轮、斜齿轮、圆锥齿轮、蜗杆蜗轮机构设计。(2)项目的任务

1)带传动与链传动的设计 2)齿轮传动设计(3)教学目标: 1)知识目标

了解v带标准规格,链传动的类型、特点、滚子链的主要参数。理解v带传动工作原理及类型。

掌握v带传动设计方法。

了解齿轮传动的特点和类型,理解齿廓啮合基本定律,渐开线及其性质。了解齿轮的加工方法和根切现象。

了解齿轮的失效形式和齿轮常用材料及计算准则。

了解斜齿圆柱的啮合特点及强度计算。理解斜齿圆柱齿轮的受力分析。了解直齿圆锥齿轮传动的几何尺寸、受力分析和强度计算。

理解齿轮正确啮合条件、标准安装、标准中心距和连续传动条件。掌握渐开线直齿、斜齿圆柱齿轮几何尺寸的计算。

掌握直齿圆柱齿轮的受力分析、齿根弯曲强度计算、齿面接触强度计算、齿轮参数选择和设计方法。

了解蜗杆传动特点、类型,动强度计算及热平衡计算的基本原理和方法。理解其主要参数和几何尺寸计算,理解蜗杆传的受力分析 2)技能目标

具有设计标准直齿圆柱齿轮的能力 3)态度目标

遵守有关法律、法规、国家标准及有关规定; 爱岗敬业,具有高度的责任心;

严格执行工作程序、工作规范、工艺文件和安全操作规程; 工作认真负责,培养团结协作和环境适应能力;

培养应变能力和创新能力;

着装整洁,符合规定,保持工作环境清洁有序,文明生产;(4)项目的教学实施:

以减速器设计引入带传动和链传动设计、齿轮传动设计(5)项目教学内容

带传动、齿轮传动的知识和设计方法(6)工作方法

以减速器设计引入带传动、链传动、齿轮传动的知识和设计方法(7)工作成果

设计出带传动、齿轮传动(8)考核评价

对设计成果进行评价并计入项目成绩 4.4项目四轴系零部件设计(1)项目概述

轴系零部件设计、学时17,分为3个学习型工作任务:轴承选择及轴承组合设计;轴的设计及轴毂连接;联轴器、离合器选择。(2)项目的任务

1)轴承选择及轴承组合设计 2)轴的设计及轴毂连接 3)联轴器、离合器选择(3)教学目标: 1)知识目标

了解轴的功用及分类、轴的材料。理解轴的结构设计。掌握轴的强度计算方法。了解滑动轴承的结构、材料及分类。

理解滚动轴承的组成、主要类型、代号及类型选择。了解解向心滑动轴承的设计计算。

理解滚动轴承的组合设计。掌握滚动轴承的寿命计算

了解用联轴器与离合器的工作原理、类型及选用。掌握平键联接的设计方法。2)技能目标

能设计轴及轴系组合 3)态度目标

遵守有关法律、法规、国家标准及有关规定; 爱岗敬业,具有高度的责任心;

严格执行工作程序、工作规范、工艺文件和安全操作规程;工作认真负责,培养团结协作和环境适应能力;培养应变能力和创新能力; 着装整洁,符合规定,保持工作环境清洁有序,文明生产;(4)项目的教学实施:

以减速器设计引入轴及轴系组合设计(5)项目教学内容

轴、轴承、平键选择和轴及轴系组合设计(6)工作方法

课件演示减速器获取信息,讲授基本知识,设计方法。(7)工作成果 设计轴系。(8)考核评价

对设计成果进行评价并计入项目成绩 5教学方法与手段

在项目一中安排一次参观进行现场教学,以后进行多媒体教学、分组讨论教学。6考核与评价考核类型 课程考核期末考试 实验成绩

作业成绩权重0.70.10.2课程整体成绩100 7说明与建议

(1)以专业教学计划培养目标为依据,以岗位任务为基本出发点,以学生发展为本位,设计课程内容。

(2)让学生在了解常用机构及零部件的基本知识及设计方法和设计理论的基础上,能进行简单机械及传动装置的设计,培养学生初步解决工程实际问题的能力。

(3)在课程实施过程中,充分利用课程特征,加大学生工程体验和情感体验的教学设计,激发学生的主体意识和学习兴趣。7.2重点、难点

重点:机器、机构、构件和零件等概念 机构运动简图绘制 图解法设计四杆机构 1常用机构设计

图解法设计盘形凸轮轮廓。难点:对虚约束的识别与处理 平面四杆机构的基本特性 重点:螺纹连接的基本知识; 螺纹连接的预紧与防松; 2联结

单个螺栓连接的强度计算; 难点:螺栓组连接的结构设计 重点:V带传动的设计。

渐开线直齿几何尺寸的计算。直齿圆柱齿轮的受力分析、3传动件设计齿根弯曲强度计算、齿面接触强度计算、齿轮参数选择和设计方法。

难点:渐开线及其性质。齿轮传动的受力分析。轮系传动比计算

重点:轴的结构设计,轴的强度计算。轴系零部件设计

4滚动轴承的组合设计。

难点:轴的强度计算,轴承的设计计算。

《机械设计基础》王少岩主编陈立德主编大连理工大学出版社高等教育出版社 大连理工大学出版社

高等教育出版社《机械设计基础课程设计指导书》王少岩主编《机械设计基础课程设计指导书》陈立德主编 《机械设计基础》

《机械设计基础》朱敬超主编邵芳主编武汉理工大学出版社吉林大学出版社

1-1至1-4解 机构运动简图如下图所示。

1-13解 该导杆机构的全部瞬心如图所示,构件 1、3的角速比为:

1-14解 该正切机构的全部瞬心如图所示,构件 3的速度为:,方

1-15解 要求轮 1与轮2的角速度之比,首先确定轮

1、轮2和机架4三个构件的三个瞬心,即 向相反。,和,如图所示。则:,轮2与轮1的转1-16解(1)图a中的构件组合的自由度为:

自由度为零,为一刚性桁架,所以构件之间不能产生相对运 动。

(2)图b中的 CD 杆是虚约束,去掉与否不影响机构的运动。故图 b中机构的自由度为:

所以构件之间能产生相对运动。

题 2-1答 : a)构。b)c)d),且最短杆为机架,因此是双曲柄机,且最短杆的邻边为机架,因此是曲柄摇杆机构。,不满足杆长条件,因此是双摇杆机构。,且最短杆的对边为机架,因此是双摇杆机构。

题 2-2解 : 要想成为转动导杆机构,则要求 与 均为周转副。(1)当 为周转副时,要求 置 和。

在 在 中,直角边小于斜边,故有: 中,直角边小于斜边,故有:

(极限情况取等号);(极限情况取等号)。

能通过两次与机架共线的位置。见图 2-15 中位综合这二者,要求

(2)当 为周转副时,要求 置 和。

在位置 时,从线段 取等号); 在位置 时,因为导杆

能通过两次与机架共线的位置。见图 2-15 中位

来看,要能绕过 点要求:(极限情况

是无限长的,故没有过多条件限制。

(3)综合(1)、(2)两点可知,图示偏置导杆机构成为转动导杆机构的条件是:

题 2-4解 :(1)由公式,并带入已知数据列方程有:

;,(2)因为曲柄空回行程用时 转过的角度为

因此其转速为: 题 2-5

解 :(1)由题意踏板 限位置,此时

在水平位置上下摆动,就是曲柄摇杆机构中摇杆的极曲柄与连杆处于两次共线位置。取适当比例 图 尺,作出两次极限位置

(见图 2.17)。由图量得: 解得 :

由已知和上步求解可知:,,和。

(2)因最小传动角位于曲柄与机架两次共线位置,因此取 式(2-3)计算可得:

代入公式(2-3)′,可知

题 2-6解: 因为本题属于设计题,只要步骤正确,答案不唯一。这里给出基本的作图步骤,不

给出具体数值答案。作图步骤如下(见图 2.18):

(1)求,(2)作(3)以(4)作 在图上量取 度,为底作直角三角形

;并确定比例尺。(即摇杆的两极限位置),即可。,摇杆长。的外接圆,在圆上取点 和机架长度

。在得到具体各杆数据之后,代入公式(2 — 3)和(2-3)′求最小传动 角,能满足

解 : 作图步骤如下(见图 2.19):

(1)求,(2)作(3)作,顶角,;并确定比例尺。

。的外接圆,则圆周上任一点都可能成为曲柄中心。

相距,交圆周于 点。(4)作一水平线,于

(5)由图量得 曲柄长度: 连杆长度: 题 2-8。解得 :

解 : 见图 2.20,作图步骤如下:(1)(2)取

(3)定另一机架位置: 分线,(4)。

角平 和,杆即是曲柄,由图量得 曲柄长度: 题 2-9解: 见图 2.21,作图步骤如下:

(1)求,(2)选定比例尺,作 置)(3)做

(4)在图上量取 曲柄长度: 连杆长度:,与,由此可知该机构没有急回特性。。(即摇杆的两极限位

题 2-10解 : 见图 2.22。这是已知两个活动铰链两对位置设计四杆机构,可以用圆心法。连 接,中垂线 与,作图 2.22 的中垂线与

交于点。然后连接,作 的交于 点。图中画出了一个位置。从图中量取各杆的长度,得到:题 2-11解 :(1)以 为中心,设连架杆长度为。,以,、,根据 作出

(2)取连杆长度 为圆心,作弧。,的另一连架杆的几个位(3)另作以 点为中心,置,并作出不同 半径的许多同心圆弧。

(4)进行试凑,最后得到结果如下:。机构运动简图如图 2.23。,,题 2-12解 : 将已知条件代入公式(2-10)可得到方程组:

将该解代入公式(2-8)求解得到:,又因为实际。,因此每个杆件应放大的比例尺为:,故每个杆件的实际长度是:,题 2-13证明 : 见图 2.25。在 圆。见图 可知 点将。

上任取一点,下面求证 点的运动轨迹为一椭,分为两部分,其中。

又由图可知,二式平方相加得

可见 点的运动轨迹为一椭圆。3-1解

如图 3.10所示,以O为圆心作圆并与导路相切,此即为偏距圆。过B点作偏距圆的下切线,此线为

凸轮与从动件在B点接触时,导路的方向线。推程运动角 如图所示。3-2解

如图 3.12所示,以O为圆心作圆并与导路相切,此即为偏距圆。过D点作偏距圆的下切线,此线为

凸轮与从动件在D点接触时,导路的方向线。凸轮与从动件在D点接触时的压力角 如图所示。

3-3解 :从动件在推程及回程段运动规律的位移、速度以及加速度方程分别为:(1)推程:

(2)回程:等加速段等减速段

。计算各分点的位移、速度以及加为了计算从动件速度和加速度,设 速度值如下:

根据上表 作图如下(注:为了图形大小协调,将位移曲线沿纵轴放大了 5倍。):

根据 3-3题解作图如图3-15所示。根据(3.1式可知,小时,凸轮

取最大,同时s 2 取最机构的压力角最大。从图3-15可知,这点可能在推程段的开始处或在推程的中点处。由图量得在推程的

开始处凸轮机构的压力角最大,此时

3-5解 :(1)计算从动件的位移并对凸轮转角求导

当凸轮转角 在 0≤ ≤ 根据教材(3-7式 可 得:

过程中,从动件按简谐运动规律上升 h=30mm。

≤ ≤ 过程中,从动件远休。

当凸轮转角 在 ≤ ≤ 的一半。根据 教材(3-5式 可得:

过程中,从动件按等加速度运动规律下降到升程

当凸轮转角 在 始位置。根

据教材(3-6式 可得:

过程中,从动件按等减速度运动规律下降到起

(2)计算凸轮的理论轮廓和实际轮廓

本题的计算简图及坐标系如图 3-16所示,由图可知,凸轮理论轮廓上B点(即滚子中心的直角坐标 为

由图 3-16可知,凸轮实际轮廓的方程即B ′ 点的坐标方程式为。

由上述公式可得 理论轮廓曲线和实际轮廓的直角坐标,计算结果如下表,凸轮廓线如图3-17所 示。

从动件在推程及回程段运动规律的角位移方程为: 1.推程: 2.回程:

计算各分点的位移值如下: 总转角(°)

3-7解:从动件在推程及回程段运动规律的位移方程为: 1.推程: 2.回程:

计算各分点的位移值如下: 总转角(°)

分度圆上渐开线齿廓的曲率半径

分度圆上渐开线齿廓的压力角

基圆上渐开线齿廓的曲率半径为 0;

齿顶圆上渐开线齿廓的曲率半径

齿顶圆上渐开线齿廓的压力角

正常齿制渐开线标准直齿圆柱齿轮的齿根圆直径:

故当齿数 时,正常齿制渐开线标准直齿圆柱齿轮的基圆大于齿根圆;齿数,基圆小于 齿根圆。

4-7 证明 用齿条刀具加工标准渐开线直齿圆柱齿轮,不发生根切的临界位置是极限点 正好在刀具 的顶线上。此时有关系:

短齿制标准齿轮、,代入上式、,代入上式

4-8证明 如图所示,、两点为卡脚与渐开线齿廓的切点,则线段 的法线。根据渐

开线的特性:渐开线的法线必与基圆相切,切点为。

再根据渐开线的特性:发生线沿基圆滚过的长度,等于基圆上被滚过的弧长,可知:

对于任一渐开线齿轮,基圆齿厚与基圆齿距均为定值,卡尺的位置不影响测量结果。

图4.9 题4-8解图 4-9解 模数相等、压力角相等的两个齿轮,分度圆齿厚 的齿轮分度圆直径

相等。但是齿数多大,所以基圆直径就大。根据渐开线的性质,渐开线的形状取决于基圆的大小,基圆小,则渐开线曲率

大,基圆大,则渐开线越趋于平直。因此,齿数多的齿轮与齿数少的齿轮相比,齿顶圆齿厚和齿根圆齿 厚均为大值。

4-10解 切制变位齿轮与切制标准齿轮用同一把刀具,只是刀具的位置不同。因此,它们的模数、压

力角、齿距均分别与刀具相同,从而变位齿轮与标准齿轮的分度圆直径和基圆直径也相同。故参数、、、不变。

变位齿轮分度圆不变,但正变位齿轮的齿顶圆和齿根圆增大,且齿厚增大、齿槽宽变窄。因此、、变大,变小。

啮合角 与节圆直径 是一对齿轮啮合传动的范畴。

4-12解(1)若采用标准直齿圆柱齿轮,则标准中心距应

说明采用标准直齿圆柱齿轮传动时,实际中心距大于标准中心距,齿轮传动有齿侧间隙,传动不

连续、传动精度低,产生振动和噪声。(2)采用标准斜齿圆柱齿轮传动时,因

节圆与分度圆重合4-13解,4-14解 分度圆锥角

4-15答: 一对直齿圆柱齿轮正确啮合的条件是:两齿轮的模数和压力角必须分别相等,即、。

一对斜齿圆柱齿轮正确啮合的条件是:两齿轮的模数和压力角分别相等,螺旋角大小相等、方向

相反(外啮合),即、、。

一对直齿圆锥齿轮正确啮合的条件是:两齿轮的大端模数和压力角分别相等,即、。

5-1解: 蜗轮 2和蜗轮3的转向如图粗箭头所示,即

图 5.图5.6 5-2解: 这是一个定轴轮系,依题意有:

齿条 6 的线速度和齿轮 5 ′分度圆上的线速度相等;而齿轮 5 ′的转速和齿轮 5 的转速相等,因 此有:

通过箭头法判断得到齿轮 5 ′的转向顺时针,齿条 6 方向水平向右。

5-3解:秒针到分针的传递路线为: 6→5→4→3,齿轮3上带着分针,齿轮6上带着秒针,因此有:。

分针到时针的传递路线为: 9→10→11→12,齿轮9上带着分针,齿轮12上带着时针,因此有:。

5-4解: 从图上分析这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2为行星轮,构件

当手柄转过,即 时,转盘转过的角度,方向与手柄方向相同。

为行星架。5-5解: 这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2、2′为行星轮,构件

为10,构件 与 的转向相同。

5-6解: 这是一个周转轮系,其中齿轮 1为中心轮,齿轮2为行星轮,构件

5-7解: 这是由四组完全一样的周转轮系组成的轮系,因此只需要计算一组即可。取其中一组作分 析,齿轮 4、3为中心轮,齿轮2为行星轮,构件1为行星架。这里行星轮2是惰轮,因此它的齿数

与传动比大小无关,可以自由选取。

(3)又挖叉固定在齿轮上,要使其始终保持一定的方向应有: 联立(1)、(2)、(3)式得:

5-8解: 这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2、2′为行星轮,为行星架。

为行星架。5-9解: 这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2、2′为行星轮,∵设齿轮 1方向为正,则,∴ ∴

图 5.1图5.14 5-10解: 这是一个混合轮系。其中齿轮 1、2、2′

3、齿轮2、2′为行星轮,为行星架。而齿轮4和行星架

组成周转轮系,其中齿轮1、3为中心轮,组成定轴轮系。

在定轴轮系中: 又因为:(3)

联立(1)、(2)、(3)式可得:

5-11解: 这是一个混合轮系。其中齿轮 4、5、6、7和由齿轮3引出的杆件组成周转轮系,其中齿 轮4、7为中心轮,齿轮5、6为行星轮,齿轮3引出的杆件为行星架 轮

。而齿轮1、2、3组成定轴系。在周转轮系中:(1)

又因为:,时,的转向与齿轮1和4的转向相同。联立(1)、(2)、(3)式可得:(1)当,(2)当 时,(3)当 与齿轮1

和4的转向相反。,时,的转向

5-12解: 这是一个混合轮系。其中齿轮 4、5、6和构件,齿轮5为行星轮,组成周转轮系,其中齿轮4、6为中心轮

是行星架。齿轮1、2、3组成定轴轮系。

在定轴轮系中: 又因为:,(3)

联立(1)、(2)、(3)式可得: 即齿轮 1 和构件 的转向相反。

5-13解: 这是一个混合轮系。齿轮 1、2、3、4组成周转轮系,其中齿轮1、3为中心轮,齿轮2为 行星轮,齿轮4是行星架。齿轮4、5组成定轴轮系。

在周转轮系中:,∴(1)

在图 5.17中,当车身绕瞬时回转中心 转动时,左右两轮走过的弧长与它们至 点的距离

成正比,即:联立(1)、(2)两式得到:,(2)

在定轴轮系中: 则当:

时,代入(3)式,可知汽车左右轮子的速度分别为,5-14解: 这是一个混合轮系。齿轮 3、4、4′、5和行星架 心轮,齿轮4、4′为行星轮。齿轮1、2组成定轴轮系。

组成周转轮系,其中齿轮3、5为中

在定轴轮系中: 又因为:,(2)

(4)依题意,指针 转一圈即

此时轮子走了一公里,即(5)

联立(1)、(2)、(3)、(4)、(5)可求得

5-15解: 这个起重机系统可以分解为 3个轮系:由齿轮3′、4组成的定轴轮系;由蜗轮蜗杆1′和5

组成的定轴轮系;以及由齿轮1、2、2′、3和构件 组成的周转轮系,其中齿轮1、3是中心轮,齿

轮4、2′为行星轮,构件 是行星架。

一般工作情况时由于蜗杆 5不动,因此蜗轮也不动,即

在定轴齿轮轮系中: 又因为:,(4)

联立式(1)、(2)、(3)、(4)可解得: 当慢速吊重时,电机刹住,即

。,此时是平面定轴轮系,故有:

5-16解: 由几何关系有:

又因为相啮合的齿轮模数要相等,因此有上式可以得到: 故行星轮的齿数:

5-17解: 欲采用图示的大传动比行星齿轮,则应有下面关系成立:

又因为齿轮 1与齿轮3共轴线,设齿轮1、2的模数为 有:,齿轮2′、3的模数为,则

联立(1)、(2)、(3)、(4)式可得

可能取到1。因此 此,图示的 时,(5)式可取得最大值1.0606;当

时,(5)式接近1,但不的取值范围是(1,1.06)。而标准直齿圆柱齿轮的模数比是大于1.07的,因大传动比行星齿轮不可能两对都采用直齿标准齿轮传动,至少有一对是采用变位齿轮。

5-18解: 这个轮系由几个部分组成,蜗轮蜗杆 1、2组成一个定轴轮系;蜗轮蜗杆5、4′组成一个定

轴轮系;齿轮1′、5′组成一个定轴轮系,齿轮4、3、3′、2′组成周转轮系,其中齿轮2′、4是中

心轮,齿轮3、3′为行星轮,构件 是行星架。

在蜗轮蜗杆 1、2中:(2)

在蜗轮蜗杆 5、4′中:(3)

在齿轮 1′、5′中:

联立式(1)、(2)、(3)、(4)、(5)式可解得:,即。

5-19解: 这个轮系由几个部分组成,齿轮 1、2、5′、3、组成周转轮系,齿轮3′、4、5组成定轴轮系。

组成的周转轮系中:,则

组成一个周转轮系,齿轮 1、2、2′、在齿轮 1、2、5′、由几何条件分析得到:

在齿轮 1、2、2′、3、由几何条件分析得到:

组成的周转轮系中:,则

在齿轮 3′、4、5组成的定轴轮系中:

联立式(1)、(2)、(3)、(4)式可解得: 6-1解

槽轮机构的运动特性系数

6-3解 槽轮机构的运动特性系数

因: 6-4解 要保证

则槽轮机构的运动特性系数应为

槽数 和拔盘的圆销数 由此得当取槽数 6-5 解:

~8时,满足运动时间等于停歇时间的组合只有一种:

结构简单、加工方适用于低速、转角不摇杆的往复摆动变成棘轮的单棘轮机构

便,运动可靠,但冲击、大场合,如转位、分度以向间歇转动

结构简单,效率高,拨盘的连续转动变成槽轮的间用于转速不高的轻工槽轮机构

传动较平稳,但有柔性冲歇转动

不完全齿从动轮的运动时间和静止时间需专用设备加工,有用于具有特殊要求的轮机构的比例可在较大范围内变化

运转平稳、定位精度凸轮式间只要适当设计出凸轮的轮廓,可用于载荷较大的场

高,动荷小,但结构较复歇运动机构

就能获得预期的运动规律。

机械设计基础 期中考试题目

题1已知图示六杆机构,原动件AB作等速回转。试用作图法确:(1)滑块5的冲程 H;

(2)滑块5往返行程的平均速度是否相同?行程速度变化系数K值;(3)滑块处机构的最小传动角γmin

题2 图示偏心圆盘凸轮机构中,已知圆盘凸轮以ω=2rad/s转动,转向为顺时针方向,圆盘半径R=50mm;当凸轮由图示位置转过90°时,从动件的速度为ν=50mm/s。试求:(1)凸轮的偏心距e;(2)凸轮转过90°时,凸轮机构的压力角αk ;(3)凸轮转过90°时,从动件的位移hk;(4)从动件的行程h。

(1)凸轮偏心距。利用速度瞬心,几何中心O即为速度瞬心p,可得ν=eω,求得e=25mm。(2)凸轮转过90°时,从动件在K点接触,其压力角为αk。

当θ=90°时,αk达到最大值。

(3)凸轮转过90°时,从动件的位移为h K。

(4)从动件在F点接触时为最大位移,即行程为h,此时αF=0。

题3 凸轮为偏心轮如图,已知参数R=30mm,loA=10mm,e=15mm,rT=5mm,E,F为凸轮与滚子的两个接触点。求

(1)画出凸轮轮廓线(理论轮廓线),求基园r0;(2)E点接触时从动件的压力角αE;(3)从E到F接触凸轮所转过的角度φ;(4)由E点接触到F点接触从动件的位移S;(5)找出最大αmax的位置。

题5图示轮系中,Z1 = Z3=25,Z5 = 100,Z2 = Z4 = Z6 = 20,试区分哪些构件组成定轴轮系?哪些构件组成周转轮系?哪个构件是转臂H?传动比i16

2、轮4的旋向;(3)求i1H

题6图示为一曲柄滑块机构OAAC,当滑块从C1移到C2时,连架杆OBB上的一条标线OBE1转至OBE2;当C从C2移到C3时,OBE从OBE2转至OBE3。现欲将曲柄OAA与连架杆OBB用一连杆AB连接起来,试求铰链点B1的位置,并画出机构第一位置的机构简图。(写出简要作图步骤,保留作图线)

以OA为圆心,OAA1为半径画圆,则所有A点都应在该圆上。以C1A1为半径,以C2为圆心画弧交圆与A2点,以C3为圆心画弧交圆于A3点。''(2)利用反转法求A2,A3点

(4)求机构第一位置的机构简图

连A1B1和B1OB,并将OBE1与OBB1固结在一起,则C1A1OAB1OB为该机构第一位置的机构简图。

}

我要回帖

更多关于 求电路中Uab电压例题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信