an-aaa处理产品生产能力利用率率 超过多少 要预警

Elementary supramolecular strings in solutions of chiral trifluoroacetylated amino alcohols
| SpringerLink
This service is more advanced with JavaScript available, learn more at http://activatejavascript.org
Elementary supramolecular strings in solutions of chiral trifluoroacetylated amino alcoholsYa. A. LitvinA. N. ShchegolikhinA. A. SkoblinS. V. StovbunStructure of Chemical Compounds, SpectroscopyDOI:
10.Cite this article as: Litvin, Y.A., Shchegolikhin, A.N., Skoblin, A.A. et al. Russ. J. Phys. Chem. B (5. doi:10.
IR spectroscopy is applied to studying the effect of nonpolar and low-polar solvents on the molecular structure of solid-state quasi-one-dimensional strings formed through the chiral self-assembly from solutions of trifluoroacetylated homochiral amino alcohols (TFAAA). It is experimentally confirmed that in stable two-phase string/solvent gels and respective xerogels, solid-phase strings contain no solvent molecules as a structural element, experiencing, however, a weak disturbing influence of solvent molecules. It is shown that the process of spontaneous self-assembly of chiral strings in solutions is accompanied by the formation of a complex system of hydrogen bonds involving the C=O, N–H, and O–H functional groups of dissolved TFAAA molecules and by the displacement of solvent molecules to the periphery of the resulting quasi-one-dimensional strings. The results of the present work, together with data obtained by other experimental methods, indicate that TFAAA-based elementary strings have diameters of 1–2 nm, being crystalline, molecularly thin, quasi-one-dimensional objects. The amplitude of the thermally activated bending vibrations (transverse phonons) of elementary strings is sufficient to cause the entanglement of elementary strings, which leads to the formation of larger diameter supercoiled strings.chiralitysupramolecular structuresIR spectrumhydrogen bondvan der Waals force1.G. Godeau and D. Barthelemy, Langmuir 25, ).2.M. George and R. G. Weiss, Acc. Chem. Res. 39, 489 (2006).3.A. A. Bredikhin, Z. A. Bredikhina, and A. V. Pashagin, Mendeleev Comm. 21, 144 (2011).4.C. Li, N. J. Buurma, I. Haq, C. Turner, and S. P. Armes, Langmuir 21, 1).5.J. Peng, K. Liu, J. Liu, et al., Langmuir 24, ).6.A. Gans?uer, I. Winkler, T. Klawonn, et al., Organometallics 28, ).7.A. R. Hirst, I. A. Coates, T. R. Boucheteau, et al., J. Am. Chem. Soc. 130, ).8.C. C. Lee, C. Grenier, E. W. Meijer, and A. P. H. J. Schenning, Chem. Soc. Rev. 38, 671 (2009).9.S. Vauthey, S. Santoso, H. Gong, N. Watson, and S. Zhang, Proc. Natl. Acad. Sci. 99, ).10.M. George and R. G. Weiss, Langmuir 19, ).11.M. George, G. P. Funkhouser, P. Terech, and R. G. Wise, Langmuir 22, ).12.M. George and R. G. Weiss, J. Am. Chem. Soc. 123, 1).13.S. Laan, B. L. Feringa, R. M. Kellogg, and J. Esch, Langmuir 18, ).14.K. Inoue, Y. Ono, Y. Kanekiyo, et al., Org. Chem. 64, ).15.B. G. Bag, G. C. Maity, and S. R. Pramanik, Supramol. Chem. 17, 383 (2010).16.J. Madsen, S. P. Armes, K. Bertal, S. MacNeil, and A. L. Lewis, Biomacromolecules 10, ).17.C. Zhan, P. Gao, and M. Liu, Chem. Commun., 462 (2005).18.P. Terech and R. G. Weiss, Chem. Rev. 97, ).19.S. J. Langford, M. J. Latter, V. L. Lau, et al., Org. Lett. 8, ).20.L. Lu and R. G. Weiss, Langmuir 11, ).21.R. G. Kostyanovsky, D. F. Lenev, O. N. Krutius, and A. A. Stankevich, Mendeleev Commun. 15, 140 (2005).22.S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 317 (2012).23.S. V. Stovbun, Russ. J. Phys. Chem. B 5, 546 (2011).24.S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, Dokl. Phys. Chem. 442, 36 (2012).25.S. V. Stovbun, A. A. Skoblin, A. I. Mikhailov, M. V. Grishin, B. R. Shub, A. M. Zanin, and D. P. Shashkin, Nanotechnol. Russ. 7, 531 (2012).26.S. V. Stovbun, A. M. Zanin, A. A. Skoblin, E. E. Bragina, and M. A. Gomberg, Russ. J. Phys. Chem. B 7, 60 (2013).27.N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Partial Derivative Equations of Mathematical Physics (Vyssh. Shkola, Moscow, 1970) [in Russian].28.S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, R. G. Kostyanovskii, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 5, ).29.S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Byull. Eksp. Biol. Med. 154 (7), 41 (2012).30.S. V. Stovbun, A. A. Skoblin, and A. M. Zanin, Russ. J. Phys. Chem. B 8, 293 (2014).31.S. V. Stovbun, A. A. Skoblin, A. M. Zanin, D. P. Shashkin, V. A. Tverdislov, and A. A. Berlin, Dokl. Phys. Chem. 450 (5), 111 (2013).32.R. A. Nyquist, Spectrochim. Acta 19, 509 (1963). doi 10.51(63)80061-233.R. A. Nyquist, Spectrochim. Acta 19, ). doi 10.51(63)80018-134.R. D. McLachlan and R. A. Nyquist, Spectrochim. Acta 20, ). doi 10.51(64)80120-X35.E. Sánchez de la Blanca, M. V. García, and D. Troiti?o, Spectrochim. Acta, Pt. A: Mol. Spectrosc. 50, 41 (1994).36.D. Troiti?o, E. Sánchez de la Blanca, and M. V. García, Spectrochim. Acta, Pt. A: Mol. Spectrosc. 46, ).37.A. Russel and H. W. Thompson, Spectrochim. Acta 8, 138 (1956).38.A. Langseth and R. C. Lord, Kgl. Danske Videns., Selsk., Mat-Fys. Medd. 16, 6 (1948).39.T. Miyazawa, T. Shimanouchi, and S. Mizushima, J. Chem. Phys. 29, 611 (1958).40.D. Sajan, H. J. Ravindra, Misra Neeraj, and I. Joe Hubert, Vibrat. Spectrosc. 54, 72 (2010).41.S. Tai, S. Papasavva, J. E. Kenny, et al., Spectrochim. Acta A 55, 9 (1999).42.I. M. Campbell, Acidity and Properties of Major Industrial Acids (Chapman and Hall, London, 1992), p. 11.43.T. Miyazawa, J. Mol. Spectrosc. 4, 168 (1960).44.V. I. Gol’danskii and V. V. Kuz’min, Sov. Phys. Usp. 32, 1 (1989).45.D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 499 (2014).46.J. W. Steed and J. L. Atwood, Supramolecular Chemistry, 2nd ed. (Wiley, Chichester, 2009).47.L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon Press, New York, 1986).48.L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).49.L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Fizmatlit, Moscow, 2007; Pergamon Press, New York, 1988).50.S. V. Stovbun, A. M. Zanin, A. A. Skoblin, M. G. Mikhaleva, D. V. Zlenko, and V. A. Tverdislov, Mosc. Univ. Phys. Bull. 70, 51 (2015).Ya. A. Litvin1A. N. Shchegolikhin1A. A. Skoblin1S. V. Stovbun11.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
Print ISSN
Online ISSN
Publisher Name
Pleiades Publishing
Buy (PDF)EUR&34,95
Unlimited access to full article
Instant download (PDF)
Price includes local sales tax if applicable
Export citation
Share article
We use cookies to improve your experience with our site.【图文】AAA预处理_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
上传于||暂无简介
大小:1.75MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢114网址导航}

我要回帖

更多关于 生产能力利用率怎么算 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信