在化学和材料领域中,拓扑空间结构和拓扑空间缺陷是什么意思?

「拓扑」描述的是局部形变下的不变性。举个例子,对于拓扑学家来说,咖啡杯和面包圈没什么区别。因为只要图形的闭合性质不被破坏,在拓扑学上它们就都是等价的。未来或将有一场拓扑技术革命。手机用一段时间会发热,电脑速度不够快,冰箱耗电太多——你是不是对家里的电器总是有些不满意?未来,如果能把拓扑材料应用到电器中,这些问题都可迎刃而解。三位科学家因为在拓扑材料、拓扑相变领域的重大贡献,获得了 2016 年度诺贝尔物理学奖。他们分别是英美双重国籍的大卫·索利斯,英国的邓肯·霍尔丹及迈克尔·科斯德利茨。他们是拓扑物态研究的先驱和开创者。他们在这个方向的早期开创性工作,为拓扑物态的发展打下了基础。来自数学的启示在科学界有句名言:「数学是科学之母。」在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。几乎没有哪一门自然科学的研究能够脱离数学的支撑,物理学和数学的联系尤其紧密。微积分是牛顿力学的基础,黎曼几何是广义相对论的基础,微分几何是弦理论的基础,而量子力学的每次进展也都会有矩阵、群论这些新的数学工具「加盟」……可以说,每当有新的数学工具被引入物理学,都会极大地推动物理学的发展。同样,三位获奖者的拓扑物态研究也是建立在数学研究的基础上的。「拓扑」一词源于数学。「拓扑学」是近代发展起来的数学领域中一个重要的、基础的分支,研究的是几何图形在连续形变下保持不变的性质,是描述局部形变下的不变性。拓扑研究只考虑物体间的位置关系,而不考虑它们的形状和大小。在 2016 年诺贝尔奖颁奖的新闻发布会上,诺贝尔物理学奖评委会委员托尔斯·汉森从自己的午餐袋中取出了三个形状不同的面包:一个没有洞的瑞典国民肉桂卷面包、有一个洞的面包圈和两个洞的瑞典碱水面包,以便更生动地让各位媒体人了解「拓扑学」这个相对冷门的概念。汉森解释道:「对我们来说,这三种面包是完全不同的,口味有甜有咸,形状也不一样;对于拓扑学家而言,他们关注的不同点却只有一个,那就是面包上洞的数量——肉桂卷面包上没有洞,面包圈上有一个洞,碱水面包上有两个洞。对于这些面包,我可以弯曲它、挤压它,但如果要改变洞的数量,我就必须非常用力地撕开它才行,这就是拓扑不变量的稳定性。」什么是拓扑物态后来,科学家将「拓扑」的概念运用于物理研究。比如,某个拓扑材料的细节发生了细小的变化,但是其性质、功能依然保持。这就是物理学中的拓扑物态理论。那么,什么是「拓扑物态」呢?它是指物质发生连续形变所处的相对稳定的物态,是拓扑材料专有的物态,和拓扑材料的几何性质关系密切。物态是一般物质在一定的温度和压强条件下所处的相对稳定的状态,通常是指固态、液态和气态。物质的上述三种状态是可以互相转化的。比如液态的水,冷的时候会结成冰(固态),加热到较高温度时会变成蒸汽(气态)。拓扑物态听起来似乎特别深奥,但我们可以用简单的例子来理解它。想象一下,有一个橡皮泥做的球,把它揉一揉,捏一捏,通过小的形变,就可以把球面变成一个正方体的表面,但是却不能把它变成一个面包圈的表面。因为,如果要变成面包圈的表面形状,就必须要把球面戳一个洞,这也就打破了这个表面的连续性。再换成专业词汇来表达:球状和面包圈状拓扑材料,具有不同的拓扑物态;而球状和正方体状拓扑材料,则具有相同的拓扑物态。科幻电影《终结者 2》里,那个液态机器人杀手的每次变化都可以看作连续形变,具有相同的拓扑物态。只要图形的闭合性质不被破坏,在拓扑学上它们就都是等价的。同样,对于拓扑学家来说,咖啡杯和面包圈没什么区别,二者是等价的,具有相同的拓扑物态,因为咖啡杯可以通过连续形变成为面包圈的样子。什么是拓扑相变}
近日,中国科学技术大学物理系彭晨晖教授团队等在光控活性物质拓扑结构转换方面取得重要进展。前述团队和香港科技大学张锐教授团队合作,以各向异性的液晶材料为研究对象,利用光学构型的方法制备了可编程控制的三维拓扑结构。这项基础研究有助于理解活性软物质中的三维拓扑结构,成果发表在《美国国家科学院院刊》(PNAS)。图片来自《美国国家科学院院刊》(PNAS)近十年来,活性软物质的研究逐渐成为软凝聚态物理的研究前沿。软物质(soft matter)是指处于固体和理想流体之间的物质,又称软凝聚态物质。而如何解析诸如拓扑缺陷、涡旋等拓扑结构,是理解处于非平衡态的活性软物质的关键所在。了解拓扑缺陷的结构对于其在定向自组装、传感和光子器件等领域的应用非常重要。由于活性软物质具有内在的非平衡态属性及复杂的三维结构,对于其拓扑结构的研究一直挑战与机遇并存。而液晶是一类分子取向长程有序的材料。其中,长程有序指整体性的有序现象。液晶分子可以自组装成一定的结构,在显示、感应、光子器件等领域有广泛应用。因此,研究团队首先控制液晶自组装结构,制备了二维拓扑缺陷,然后将此二维拓扑图案与沿特定方向的液晶分子结合,利用两种构型之间的不兼容,制备了处于平衡态的三维拓扑结构。随后,利用光照驱动液晶分子使其处于非平衡态,并成为具备活性的软物质系统,从而实现三维拓扑结构之间的相互转换。图1:通过控制液晶构型形成的三维拓扑结构,图片来自中科大物理系由于在整个过程中,形成三维拓扑结构的二维拓扑图案是可预设计的,研究团队实现了以编程方式控制不同三维拓扑结构之间的转换。研究人员将生物分子置于三维拓扑结构中,生物分子就会在拓扑缺陷阵列处完成自组装(如图1所示),此过程无需任何外力或外加场。其中,三维拓扑缺陷阵列完全由光学构型决定,且可以用光场对其进行复写。可复写的三维拓扑缺陷会被光场引导产生不同的取向、位置以及几何图案。可编程的三维拓扑结构则可诱导上面的生物分子自组装随其变化,从而实现光控可编程生物分子自组装功能。前述团队首次制备了处在非平衡状态下的软物质三维拓扑结构,并利用光照实现了三维拓扑结构之间以可编程的方式进行相互转换。审稿人评价前述工作“是动态控制活性液晶中的相错结构领域一项意义重大的进展”。其研究中所使用的通过控制分子自组装,来对拓扑结构进行编程,为将来实现可编程的生物分子自组装,以及智能活性材料等研究提供了广阔空间。责任编辑:李跃群校对:栾梦澎湃新闻报料:021-962866澎湃新闻,未经授权不得转载扫码下载澎湃新闻客户端}

我要回帖

更多关于 拓扑空间 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信