为什么高中物理听得懂,却不会写题的问题?

在什么时候出现摩擦力?什么时候是静摩擦力?什么时候是滑动摩擦力?摩擦力和弹力之间有什么关系?怎样判断滑动摩擦力的大小与方向?怎样计算静摩擦力的大小与方向?为什么我常说静摩擦力问题比滑动摩擦力更复杂呢?摩擦力总是阻力吗?它总做负功吗?你能举出实例加以说明吗(分静摩擦和滑动摩擦两种情况)?在斜面问题中,我们常要提到斜面倾角的正切和动摩擦因数的关系,你知道是怎么回事吗?

答:摩擦力产生的前提是要有弹力,即两物体间要相互接触且产生挤压

有相对运动的趋势但静止,即静摩擦力,静摩擦力用二力平衡解

产生相对运动,即运动状态,即滑动摩擦力,f=μN

要使静止中的物体运动起来,一般要施加一个大于最大静摩擦力的力,最大静摩擦力略大于滑动摩擦力。但是在做题时,一般默认最大静摩擦力和动摩擦力相等。

滑动摩擦力计算公式为:f=μN,与物体相对运动方向相反。静摩擦力大小取决于施加的力,大小与物体运动趋势方向相反。一般说来,滑动摩擦力和施力相关,相比滑动摩擦力更加不容易计算和推断,没有明显的计算公式和运动特征。

摩擦力不总是阻力,静摩擦力,例如传送带上的物体,此时摩擦力是动力,做正功。动摩擦力,跑车发动时,轮胎与地面摩擦明显,但也是做正功。在斜面中,我们假设斜面的摩擦因数为μ,倾斜角度为β,则如果物体恰能不下滑,则物体重力斜向下分力应等于最大静摩擦力,按照f=μN来算,则有mgsinβ=μmgcosβ,化简可得:μ=tanβ,所以当β越小,物体越容易停留在斜面上。

什么情况下我们说一个物体受力平衡?什么是共点力?共点力作用下的物体的平衡条件是什么?怎么写出其平衡方程?几个力平衡,其中一个力与其它几个力的合力是什么关系?其它力不变,只一个力发生下列变化时,合力怎样变化,物体将怎样运动(注意初始情况)(1)消失;(2)反向;(3)逐渐变小,再逐渐恢复;(4)转动90°

答:静止状态、或匀速直线运动状态都属于运动状态不变的情况.如果一个物体在几个力的作用下保持静止状态或匀速直线运动状态,则这几个力平衡,所以静止状态或匀速直线运动状态称作平衡状态.

几个力,如果都作用在物体的同一点上,或者它们的作用线,相交于一点,这几个力叫做共点力。

物体处于平衡状态时,所受力平衡,一对平衡力的大小相等方向相反,作用在同一直线上.合力为零,此时平衡。

平衡方程即是几个力的矢量和为零。加入几个力平衡,其中一个力与其他几个力的合力等大反向。

当其它力不变,只其中一个力消失时,物体合力会指向这个力反方向,大小与这个力相同。

反向时,物体合力会指向这个力反方向,大小是这个力大小的2倍。

逐渐变小时,物体合力反向逐渐增大,再逐渐减小变为0.

此力转动90度,则反方向产生合力,转动45度,大小为此力的根号2倍。

什么是矢量,高中物理中使用的物理量有哪些是矢量?矢量合成和分解的法则是什么?在一些较复杂的矢量运算中,我们更喜欢使用正交分解法,你能熟练地使用它吗?什么是合力与分力?两个力的大小不变,只改变它们的夹角,它们的合力如何变化?合力不变,一个分力的方向不变,只改变另一个分力的方向,则两个分力怎样变化?将一个合力分解成两个分力,在什么条件下可以得到唯一解?几个力的合力最大值、最小值如何计算?

答:(1)定义或解释:有些物理量,既要有数值大小(包括有关的单位),又要有方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。这样的量叫做物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。这样的量叫做物理标量。

高中里如场强,力,速度,加速度等都是矢量。正交分解法能将矢量分解到两个方向上,这个对于高中生来说,必须掌握。

一个力如果它产生的效果跟几个力共同作用的效果相同,则这个力就叫那几个力的合力,而那几个力就叫这个力的分力。倘若合力不变,一个分力的方向不变,只改变另一个分力的方向,那么前一个分力会发生大小的变化。将一个合力分解为两个力,一般规定其中一个的大小和方向,另外一个也就可得唯一解。几个力的合力最大为几个力的大小只和;最小值时,找出其中数值最大的两个,取它们的差(大减小),把这个差再与其它力一起来排队,从中再选出两个最大的,重复上一步的步骤,直至所有的力排完.

在静力学中有两类题要用到图解法,你能举出实例并说明解题方法吗?

答:首先,用矢量图的几何相似性来解题(比如我们常用的相似三角形);第二种就是利用矢量图的封闭性来解题(一般要求保证合力不变)。这样可以求出力的大小,方向,变化趋势和极端值。例子有很多,这里就不举了。

为什么牛顿第一定律又叫做惯性定律?如何理解一切物体在任何情况下都具有惯性?难道它在加速运动或失重状态下也具有吗?惯性大小的量度是质量和速度吗?

答:因为牛顿第一定律的内容是:一切物体在没有受到外力作用时,总保持匀速直线运动状态或静止状态。而让物体保持原运动状态的特性就叫惯性,所以牛顿第一定律又叫惯性定律。

一切物体都具有惯性就是物体在没有受到外力作用时,总保持原来的运动状态。加速运动或者失重状态也具有惯性,加速时因为受到力的作用才会时刻速度发生变化。失重状态重力加速度变小但是依然也在发生变化。惯性大小只有一个量度,就是质量!

牛顿第二定律回答了什么问题?你知道为什么在国际单位制中k取1吗?在解题中牛顿第三定律的实用价值是什么?你能区分一对作用力和一对平衡力吗?

答:牛顿第二定律揭示了物体所受合力与它运动加速度的关系。之所以在国际单位制中K取1,这是由于力的单位“牛顿”的定义就是1kgm/s?2;。在解题中牛顿第三定律经常用到通过反作用力来探知作用力。

平衡力:1、二力的作用点:同一个物体;2、二力的性质:不一定相同3、二力的效果,只改变物体形状,不会改变物体运动状态;4、不一定同时存在.

作用与反作用力:1、二力的作用点:二个物体;2、二力的性质:一定相同3、二力的效果,可改变物体形状,也可改变物体运动状态;4、一定同时存在.

牛顿定律的瞬时性问题通常有两类:(1)求解瞬时加速度;(2)对物体进行动态分析。你知道这两类题目的解题关键是什么吗?请举实例说明。你会借助简谐运动的对称性研究弹簧问题吗?传送带问题是高中物理的重点知识,你了解通常都是怎样出题的吗?

答:对物体的受力进行分析,即时能够得到结果,一般说来,我们要对物体所受的全部分力进行逐个分析,分析的根据就是它所处的空间,运动的速度大小和方向,还有所占有的能量等。

在以弹簧为主体的简谐运动中,可以参考简谐运动的特性来看弹簧,首先,竖直方向放置的弹簧和物体,其平衡位置在原长减去mg/k处,此时物体受力平衡;水平放置的物体,平衡位置在原长;有倾斜角度时要按照倾斜角度计算;在偏离平衡位置的过程中,只要偏离平衡位置相同的地方,其加速度大小相等,方向相反;速度大小相同,方向需要区分;同时此时弹簧的能量和物体的能量分别对应相等。

传送带模型作为高中物理的重点知识,可以从简单的运动知识点出题,考查瞬时加速度,瞬时速度,位移,相对位移等;也可以从功能关系上来考察,题目设计过程一般比较复杂。可以将传送带与多重模型结合,比如平抛,碰撞等。除了重力场中,也可以与电场,磁场相结合,综合考查小伙伴们的能力。

牛顿定律的同向性问题关键就是正交分解法的应用,你知道怎么建立坐标轴、怎么写方程吗?如何理解失重和超重,是重力真的变化了吗?

答:一般来讲在水平面内可以任意建立坐标系,但是在斜面上最好沿物体下滑的方向建立x轴,然后建立y轴。写方程要在两个方向上对加速度进行分析,有时候也要正交分解,然后根据牛顿第二定律来列方程。

失重与超重,实际上就是视重与实重的关系,视重就是竖直方向由于有加速度(除了重力加速度外的)引起的,实重就是物体的重量

当物体处于超重状态时,加速度向上(假设物体放在地面上,因为超重,所以对地面的压力大于本身重力,由牛三定律知道物体受到地面的弹力大于重力,所以加速度向上)

求解牛顿定律的连接体问题,通常先看成整体求加速度,再隔离求相互作用力,你能举出实例吗?只要你愿意,所有涉及多个物体的问题都可以使用整体法,那万一物体的加速度各不相同该怎么办呢?什么时候用这种整体法解题比较方便?

答:先看成整体求加速度,再隔离求相互作用力,一般这种方法求由两个叠加的物块最常见。用整体法处理加速度不相同的系统时,可以使用质点组的牛顿第二定律。

系统所受的合外力,等于系统中各个物体的质量与其自己加速度乘积的矢量和。

倘若系统内部各物体质量或者加速度有明确的运算关系,这种方法还是比较方便的。

对于临界问题的求解,应先找到临界点,万一没找到临界点,应采用什么方法去寻找呢?

答:临界问题一定要找到其临界点,这是状态发生变化的重要特征节点,如果没有明显的临界词,那么我们要去探索可能会发生状态变化的节点,例如在物体运动中,假如其速度方向发生改变,那么摩擦力也就会发生改变。所以速度为0就是一个临界点。

}

在运用物理知识解决实际问题的过程中,人们逐步积累并形成了一些处理问题的方法。下面介绍几种常用的处理问题的方法:

思维转化法即将“多个物体的运动”转化为 “一个物体的运动”,试看下例:

某同学观察从屋檐边滴下的水滴,发现滴水是等时的,且第5滴正欲滴下时,第1滴刚好到达地面;第2滴和第3滴水刚好位于窗户的下沿和上沿,他测得窗户上、下沿的高度差为1m,由此求屋檐离地面的高度。

解析:可将5滴水滴的位置转化为一滴水做自由落体运动连续相等时间内的位置。自上而下相邻点之间的距离比为1∶3∶5∶7,因点“3”“2”间距为1m,可知屋檐离地面高度为×(1+3+5+7)m=3.2m。

在运动学问题的解题过程中,若按正常解法求解有困难时,往往可以通过变换思维方式,使解答过程简单明了。在直线运动问题中常见的思维转化方法除上例外,还有将末速度为零的匀减速直线运动,通过逆向思维转化为初速度为零的匀加速直线运动;将平均速度转化为中间时刻的速度等。

等效法就是在保证某一方面效果相同的前提下,用理想的、熟悉的、简单的物理对象或物理过程替代实际的、陌生的、复杂的物理对象或物理过程的思想方法。合力与分力、电阻的串联与并联、交流电的有效值等都是等效法在物理学中的实际应用。

在应用等效法解题时,应明确两个事物的等效只是特定的、某一方面的等效。因此在具体的问题中必须明确哪一方面等效,这样才能把握等效的条件和范围。

如图所示,先让待测电阻与一电流表串联后接到电动势恒定的电源上,读出电流表示数I;然后将电阻箱与电流表串联后接到同一电源上,调节电阻箱的阻值,使电流表的示数仍为I,则电阻箱的读数即等效于待测电阻的阻值。

微元法是指把研究对象或过程分隔成小块的(微元)来加以研究。这种方法在人民教育出版社《物理》(新教材)中体现最为突出。

例:一个人推磨,其推磨杆的力的大小始终为F,与磨杆始终垂直,作用点到轴心的距离为r,磨盘绕轴缓慢转动。则在转动一周的过程中推力F做的功为( )。

解析:磨盘转动一周,力的作用点的位移为0,但不能直接套用W=Flcos α求解,因为在转动过程中推力F为变力,我们可以用微元的方法来分析这一过程。由于F的方向在每时刻都保持与作用点的速度方向一致,因此可把圆周划分成很多小段来研究,如图所示,当各小段的弧长Δsi足够小(Δsi0)时,F的方向与该小段的位移方向一致,所以有:WF=F?Δs1+F?Δs2+F?Δs3+…+F?Δsi=F?2πr=2πrF(这等效于把曲线拉直)。

这是一种能形象地表述物理规律,直观地描述物理过程,解决物理问题的方法,从图像的“点”“线”“面”所含物理意义入手,并结合有特点的实例阐述怎样解决物理问题。

例:如图所示为两电源的U-I图像,下列说法正确的是( )

A、电源①的电动势和内阻均比电源②大

B、当外接相同的电阻时,两电源的输出功率可能相等

C、当外接同样的电阻时,两电源的效率可能相等

D、不论外接多大的相同电阻,电源①的输出功率总比电源②的输出功率大

解析:电源的伏安特性曲线是一条斜率为负值的直线,反映的是电源的特征:纵轴上的截距表示电动势,斜率的绝对值表示内阻,因此A对;作外接电阻R的U-I曲线分别交电源①②的伏安特性曲线于S1、S2两点,又因为上述两个曲线在同一坐标系中的交点表示电源的工作状态。电源的工作点横、纵坐标的乘积IU为电源的输出功率,由图可知,无论外接多大电阻,两工作点S1、S2横、纵坐标的乘积都不可能相等,且电源①的输出功率总比电源②的输出功率大,故B错,D对。电源的效率 ,因为电源内阻不同则电源效率不同,C错。

物理图像可以直观形象地揭示物理规律及物理量间的相互依赖关系, 应用图像分析求解某些物理问题可达到化难为易、化繁为简的目的。在物理高考的能力要求中就有一项“应用数学工具解决物理问题的能力”,因此,必要时应用图像法求解物理问题。

除了上述几种方法外,临界分析法、反证法等也是物理教学中常用的处理问题的方法,教师在教学过程中应逐步教给学生,这样才有利于学生处理物理问题,做到举一反三。

}

积累是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一道题,也可能来自一个小段阅读材料,或者是从物理的角度理解了的生活中的问题等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的。
物理知识是分章分节的,考纲中要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。

}

我要回帖

更多关于 为什么高中物理听得懂,却不会写题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信