概率论涉及的积分公式这个定积分怎么解?

2006、2007年考研数学大纲对比

  高等数学由原来的“约60%”变为2007年的“约56%” ,线性代数由原来的“约20%”变为2007年的“约22%”,概率论与数理统计由原来的“约20%”变为2007年的“约22%”

  填空题与选择题由原来的“约40%”变为2007年的“约45%”,解答题(包括证明题)由原来的“约60%” 变为2007年的“约55%”

  一、函数、极限、连续

  8、由原来的“理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限”变为2007年的“理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限”

  二、一元函数微分学

  7、由原来的“掌握函数的最大值和最小值的简单应用”变为2007年的“掌握函数的最大值和最小值的应用”

  三、一元函数积分学

  删去2006年大纲中的“用定积分表达和计算质心”

  六、多元函数积分学

  由原来的“已知全微分求原函数”变为2007年的“二元函数全微分的原函数”

  5、由原来的“会求全微分的原函数”变为2007年的“会求二元函数全微分的原函数”

  6、由原来的“会用高斯公式、斯托克斯公式计算曲面、曲线积分”变为2007年的“掌握用高斯公式计算曲面积分的方法、并会用斯托克斯公式计算曲线积分”

  5、由原来的“绝对收敛与条件收敛的关系”变为2007年的“绝对收敛与收敛的关系”

  7、由原来的“逐项微分”变为2007年的“逐项求导”

  由原来的“变量可分离的方程”变为2007年的“变量可分离的微分方程”

  4、由原来的“掌握矩阵的初等变换”变为2007年的“理解矩阵初等变换的概念”

  3、由原来的“了解向量组的极大线性无关组和向量组的秩的概念”变为2007年的“理解向量组的极大线性无关组和向量组的秩的概念”

  五、矩阵的特征值和特征向量

  2、由原来的“了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件”变为2007年的“理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件”

  二、随机变量及其分布

  (一)随机事件和概率

  由原来的“随机变量及其概率分布”变为2007年的“随机变量”

  (三)多维随机变量及其概率分布

  由原来的“随机变量的独立性和相关性”变为2007年的“随机变量的独立性和不相关性”。由原来的“常用二维随机变量的概率分布”变为2007年的“常用二维随机变量的分布”

  (四)随机变量的数字特征

  2、由原来的“会根据随机变量的概率分布求其函数的数学期望”变为2007年的“会求随机变量函数的数学期望”

  (六)数理统计的基本概念

  由原来的“正态总体的某些常用抽样分布”变为2007年的“正态总体的常用抽样分布”

  3、由原来的“了解正态总体的某些常用抽样分布”变为2007年的“了解正态总体的常用抽样分布”

  由原来的“高等数学约80%,线性代数约20% ”变为2007年的“高等数学约78%,线性代数约22% ”

  由原来的“填空题与选择题约40% 、解答题(包括证明题)约60%”变为2007年的“填空题与选择题约45% 、解答题(包括证明题)约55%”

  一、函数、极限、连续

  由原来的“简单应用问题的函数关系的建立”变为2007年的“函数关系的建立”

  1、由原来的“会建立简单应用问题中的函数关系式”变为2007年的“会建立应用问题中的函数关系”

  4、由原来的“了解初等函数的基本概念”变为2007年的“了解初等函数的概念”

  8、由原来的“理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限”变为2007年的“理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限”

  二、一元函数微分学

  4、由原来的“会求分段函数的一阶、二阶导数”变为2007年的“会求分段函数的导数”

  5、由原来的“了解柯西中值定理”变为2007年的“了解并会用柯西中值定理”

  7、由原来的“掌握函数最大值和最小值的求法及其简单应用”变为2007年的“掌握函数最大值和最小值的求法及其应用”

  三、一元函数积分学

  删去2006年大纲的“6、了解定积分的近似计算法、质心”

  四、多元函数微积分学

  由原来的“多元函数偏导数的概念与计算”变为2007年的“多元函数的偏导数和全微分”

  1、由原来的“理解正交矩阵”变为2007年的“了解正交矩阵以及它的性质”

  3、删去2006年大纲的“理解解空间的概念”

  五、矩阵的特征值和特征向量

  删去2006年大纲的“相似变换的概念及性质”

  六、二次型(新增)

  二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形与规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

  1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念

  2、了解二次型的秩的概念,了解二次型的'标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形

  3、理解正定二次型、正定矩阵的概念,并掌握其判别法。

  考试科目:没有变化。

  内容比例:微积分由原来的约占50%增加为约占56%;

  线性代数由原来的约占25%减少为约占22%;

  概率论与数理统计由原来的约占25%减少为约占22%。

  题型比例:填空题与选择题的比例由原来的约占30%增加为约占45%;

  解答题(包括证明题)的比例由原来的约70%减少为约占55%。

  一、函数、极限、连续

  “无穷小和无穷大的概念及其关系”修改为“无穷小量和无穷大量的概念及其关系”

  “无穷小的性质及无穷小的比较”修改为“无穷小量的性质及无穷小量的比较”

【、考研数学大纲对比】相关文章:

}

2018考研数学首轮复习已经开启,下面为大家整理了概率论复习过程中常见的8个问题,希望能为广大学子答疑解惑。

1.概率的数理统计要怎么复习?什么叫几何型概率?

答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。我个人认为一是它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。

这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。

何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。

关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。我想明年数学一(统计)应该考一个八、九分的题是比较适中的。从今年考试中心的样题统计这一块是九分。数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。

至于复习,它的内容占了四分之一的样子。但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水平。其实这部分稍微花一点时间就可以掌握了。主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。

然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。一致性一般不会考,考的可能性很小。这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的情况也就是代代公式。

最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。一是了解U检验统计量、T检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。另外假设检验的思想和四个步骤了解一下就可以了。我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。

2.概率的公式、概念比较多,怎么记?

答:我们看这样一个模型,这是概率里经常见到的,从实际产品里面我们每次取一个产品,而且取后不放回去,就是日常生活中抽签抓阄的模型。现在我说四句话,大家看看有什么不同,第一句话“求一下第三次取到十件产品有七件正品三件次品,我们每次取一件,取后不放回”,下面我们来求四个类型,第一问我们求第三次取得次品的概率。

第二问我们求第三次才取得次品的概率。第三问已知前两次没有取得次品第三次取到次品。第四问不超过三次取到次品。大家看到这四问的话我想是容易糊涂的,这是四个完全不同的概率,但是你看完以后可能有很多考生认为有的就是一个类型,但实际上是不一样的。

先看第一个“第三次取得次品”,这个概率与前面取得什么和后面取得什么都没有关系,所以这个我们叫绝对概率。第一个概率我想很多考生都知道,这个概率应该是等于十分之三,用古代概率公式或者全概率公式求出来都是十分之三。这个概率改成第四次、第五次取到都是十分之三,就是说这个概率与次数是没有关系的。所以在这里我们可以看出,日常生活中抽签、抓阄从数学上来说是公平的。

拿这个模型来说,第一次取到和第十次取到次品的概率都是十分之三。下面我们再看看第二个概率,第三次才取到次品的概率,这个事件描述的是绩事件,这是概率里重要的概念,改变表示同时发生的概率。但是这个与第三次的概率是容易混淆的,如果表示的可以这样表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。

如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC绩事件发生的概率。第三问表示条件概率,已知前两次没有取到次品,第三次取到次品P(C|AB),第三问求的就是一个条件概率。我们看第四问,不超过三次取得次品,这是一个和事件的概率,就是P(A+B+C)。从这个例子大家可以看出,概率论确实对题意的理解非常重要,要把握准确,否则就得不到准确的答案。

3.我概率这块掌握的不够扎实,复习很困难,我应该怎样才能更好的复习概率这部分内容?

答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学平常复习时候,只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。

例如:比如我们一个盒子一共有十件产品,其中三件次品,七件正品,我们做一个实验,每次只取一件产品,取之后不再放回去,现在我提两个问题:一个是第三次取的次品是什么事件,这个事件就是积事件,第一次没有取到次品,第二次没有取到次品,第三次是取到次品,求这么一个事件的概率,但是换一个问题,我说你求前面两次没有取到次品情况下,第三次取到次品的概率,这个就不是积事件了,我第二个问题是知道了前面两次没有取到次品,这个信息已经知道了,然后问你第三次取到次品概率是多少,这是条件概率,这个信息已经知道了,另外一个事件发生的概率,这叫条件概率,这是容易混淆的。还有绝对概率,拿我们刚才举的例子来讲,如果我让你求第三次取到次品是什么概率,那是绝对事件的概率,这和前面两个又不一样。

举这个例子提醒考生复习时候把这些基本概念搞清楚了,把公式把握了,这个就比较容易了。跟微积分比较起来这里没有什么公式,公式很少。所以我们把基本概念弄清楚以后,计算的技巧比微积分少得多,所以有同学跟我说,他说概率统计这门课程要么就考高分,要么考低分,考中间分数的人很少,这就说明了这种课程的特点。

4.概率的公式非常难背,有什么好方法吗?

答:背下来是基本的要求,概率的公式并不多,但是概率的公式和高等数学的公式相比,仅仅记住它是不够的,比如给一个函数求导数,你会做,因为你知道是求导数,概率问题,比如全概率公式,考试的时候从来没有哪一年是请你用全概率公式求求某概率,所以从分析问题的层面来说概率的要求高一点,但是从计算技巧来说概率的技巧低一些,所以我建议大家结合实际的例子和模型记它。比如二向概率公式,你可以这么记它,记一个模型,把一枚硬币重复抛N次,正面冲上的概率是多少呢?这个公式哪一个符号在实际问题里面是什么东西,这样才是在理解的基础上记忆,当然就不容易忘记了。

5.关于数理统计先阶段复习应该抓哪些?

答:考试要注意,只有数学1和数学3的同学要考数理统计,按照以前考试数学1一般来说考三分之一分数的题,数学3是四分之一,但是仅仅是一个很例外的情况,2003年数学1考了16分的数理统计,但是今年没有考这部分,今年考试这个地方的命题是有一点有失偏颇,我个人的看法为了避免这样的情况,所以这个地方一定要看,一般要考8分左右的题是比较合适的,到底考什么,我可以把这个范围缩的比较小,考这么几种题型,第一个是求统计量的数字特征或者是统计量的分布,统计量大家知道就是样本的函数,样本就是X1X2-Xn,就是期望、方差、系方差,相关系数等等,求统计量的数字特征。

第二个题型,统计量既然是随机变量,当然可以求统计量的分布,2001年数学3是考了,2002年数学3考了,所以这个地方也是重要的题型。其次第三种题型是参数估计,你要会求。要考你背两到三个区间估计的公式就可以了,所以为什么这个地方考的次数最多,每一种方法你都要会做。第四种题型就是对估计量的好坏进行评价,估计是无偏是有效的还是抑制的。2003年就考了一个大题。

另外第五种题型就是假设间接这个地方,这么年以来只考过两次,而且从99年以来练习五年这一章是没有考,但是也正音连续五年没有考,我个人估测2004年在这个上面考一个小题的可能是非常大的,我想同学们这部分花一点点时间看一看它,可能考一个小题,考一个什么题,就是把统计量写出来,你会不会把分布写出来,以填空的方式。另外一种考法,它的只对什么进行检验,对什么参数进行检验,你把统计参数写出来。第三种方法,设计一个问题,把架设检验的十个步骤做出来,第一个步骤是提出架设,第二步写出检验统计量。这个部分也不会出一个大题,应该是以小题的形式出现。

6.数学一概率和统计一般是怎样的分值比例?重点分别是什么?

答:我们1997年实行新大纲以后,除了1997年没有考,数学一从1998年到今年每一年都考到数理统计这块内容,也可以更多的情况下通过大题形式考,这里头大家复习时候应该稍微注意一下,数理统计它的公式特别多,但是本质上全部概括起来,三个动态总体的抽样分布,当总体方向是未知的时候,我们这几年考题表面上考数理统计的问题,有相当一部分考数理统计它在具体计算过程里头的期望和方差的计算问题。所以经常把数理统计和我们数字特征结合起来考,这种情况我认为没有必要过于区分数理统计占怎样的分值比例,本身都是紧密相连的。

7.数理统计中考试重点是什么?参数估计占多大比重?

答:参数估计这部分它占数理统计的一多半内容,参数估计这块应该是最重要的。统计里面第一章就是关于样本还有统计量分布这部分,这部分就是求统计量的数字特征,统计量是随机变量。统计里面有什么题型?一个参数估计,一个求统计量数字特征或者求统计量的分布,统计量是随机变量,任何随机变量都有分布。自然会有这样的题型。求统计量的数字特征,求统计量的分布,然后参数估计,然后估计的标准。统计这个内容对大家来说应该是比较好掌握的,题型比较少,你比较好把这个题做好。

8.数一中假设检验怎么考?参数估计中区间估计的公式是否都要记住?也就是统计量及其分布这些公式很复杂如何更好记忆,历年考试出现的好象不是特别多,今年是否会有变化?

答:区间估计不是考试重点,属于最低层次的,你只要知道两到三个区间公式就可以了,以前只考过前面两个,你多记一个留有一些余地,这个地方要求比较低,复杂的公式你不一定非得记住。

}

漫谈高数曲线积分的物理意义

从函数到定积分,曲线积分到环路积分

定积分的求解---牛顿.拉布尼茨公式有什么几何意义? 简单的说,因为F(b)-F(a)在几何上是f(x)的原函数F(x)在y轴上的线段长度,那么 这个长度如何表示呢? F(b)-F(a)可以写成在区间[a,b]上面的累加Sigma(F'(x)*delta(x)),那么这个Sigma就是f(x)的定积分了。反向构 造的方法联系了不定积分和定积分。

最简单的积分是写成这样的,用算子S[x,a,b]表示在区间(a,b)内对x求积分,那么函数y=x^2在(1,2)区间内的投影面积,就是 S[x,1,2](x^2)。积分可求的唯一条件是y可以表示成x的函数f(x),也就是曲线上,x和y的值,一一对应且唯一对应。什么情况不能称为函 数? 例如椭圆方程对应的图形,x,y的值不是一一对应,所以椭圆方程里面的x,y不是函数关系。这个放到计算机程序里面很好理解,一个不依赖于外部变量的函数 y=function(x),唯一的x应该确定唯一的y。否则这就不是函数了。既然积分可以写为算子形式,那么N重积分就是N阶积分算子作用于积分式的效 果,里层的积分结果包含了外层的变量而已。同理,高阶微分方程可以看成1阶微分算子的叠加结果。所以我们只讨论一阶的情况----高阶的讨论类似。

好了,说了函数和定积分的关系。那么有些积分式不能表示成函数的形式,怎么办? 例如我要求一个中心在原点,长轴在x轴上的椭圆的面积,怎么办? 我们可以把椭圆切成两部分,面积就是x轴上半部分的面积2倍。而上半部分椭圆,x,y值之间是一一对应关系,可以用定积分来求解。那么什么又是曲线积分? 可以看成是定积分的推广。定积分总是写成S(y)=S(f(x))的形式,那么我希望被积分的式子有一个加权,可以是常数,也可以是函数g(x,y),那 么现在的积分式子就是S(y')=S(g(x,y)*f(x))。求的是对x的积分,其中y=h(x)。

太抽象了,举个有物理含义的例子。

一维的定积分通过牛顿---莱布尼茨公式得到了完满的解决,等于不定积分原函数的两个取值之差。那么格林公式的意义呢? 曲线积分,分成dx和dy的两部分分别证明。考虑凸面曲线的情况,因为其他情况可以分解为若干个凸面曲线的情况。例如要证明格林公式中关于dy的部分,就 可以看作很多条平行于x轴的线穿过被积分的曲线,其中每一条直线和曲线交与两点,靠近y轴左半平面的点记做Q1,靠近y轴右半平面的点记做Q2,那么根据 曲线积分的正向定义,逆时针方向,Q1点的微元dy是正的,Q2点的微元dy是负的。然后微元的和就是Q1*dy+Q2*(-dy)=(Q1- Q2)dy。好了,Q1-Q2又是多少呢? 由牛顿莱布尼茨公式得到它是Q2-Q1这条线段上Q'(x)的积分和。那么积分和的和就是一个2重积分,这无数条平行于x轴的线段共同构成了曲线围绕而成 的面积----注意在面积内的每一条线段都满足可导条件,也就是这个面积之内的点处处可积。那么dx的部分为什么有负号? 同理,由正相的定义,靠近离x轴上半平面的那个交点上面的微元是负数,靠近x轴下半平面的交点微元是平行于正向的,牛-莱公式前面就有了负号。推广一下, 把曲线积分和2重积分之间的变幻关系放到3维空间,就有了斯托克斯定理。我们把格林公式看成斯托克斯定理的特殊形式。

格林公式有什么作用呢? 曲线积分不好算,就换成2重积分;2重积分不好算,就变成曲线积分。还有一个性质,对于符合积分与路径无关的曲线积分,可以化为一个2重积分(0),和一 个围绕不可导点的曲线积分----这个围绕不可导点的曲线可以任意取以使得积分可以很容易的求出(复变函数则用留数作了)。所谓的和路径无关,说明被积函 数的原函数是个解析的场函数,因此才能和路径无关,这就是格林公式的物理意义和能量意义。而高斯公式关心的是场的密度和场强大小,是另一个物理概念范畴。

从曲线积分出发,从格林公式出发,高斯和黎曼得到了复变函数: 把x和y作为一个整体z来研究

有一幅很著名的画叫做"神秘的小岛",这个画的内容看起来是个探险的小岛,但是把一个圆柱形的镜面放到画的中央,人们惊奇的发现其实这是作者的自画像。如 果这幅洋洋洒洒的油画是代表了实数的问题,那些无穷无尽的无比复杂的现实问题,那么这个圆柱形的镜子就是"复数"这样一个发明,它把无穷复杂的问题变成了 有穷范围内能表达的问题。由于一一映射的存在,实数域难以解决的问题通过映射和等效,在复数域通常能得到简单的解答,再映射回实数域,便是问题的解。

复数,是一个2维的数域,它用两个连续的数轴表示两个分量,有实数的连续性(无穷的值对),有线性代数离散的性质(2维度的变量之间相互正交),把无穷的 影射变换到一个简单的圆周上面:三角函数变成幅度+相位的值对,相位变化变成旋转,指数运算变成乘法,对数运算变成除法,微分方程变成了指数形式的特征方 程。实数轴是它的一个子域。数字的正负变成了数字的方向,-1代表旋转180度,所以(-1)(-1)=1,转180度当然回来了。虚数i代表旋转90 度,i*i=-1,代表旋转180度。例如y=ax+b的方向矢量为(a,1),相当于向量z=a+i。

在复数域,4则运算变成了向量的加减乘除,需要符合向量的性质(线形代数)。因为所有的数字都变成了向量(由x轴的投影和y轴的投影表示,x+iy)。平 方根的意义,就是什么数字A,A*A也就是幅度平方,角度*2得到B。那么正数开平方,角度是0,所以结果还是正数。负数开平方,180度除以2得到90 度,所以复数的平方根,是一个和x轴夹角90度的向量,单位是i。i有什么实际的物理意义吗?严格的说,其实数学本身作为一个符号系统的形而上学的演算工 具,根本就没有意义。1恒等于1,是吗,一个苹果等于令一个苹果,但是我们选苹果是时候会选那个大的好的,此"1"并不等于彼"1","1"的意义是人为 赋予的。从多维的观点线形代数的观点,所谓的"实数"其实就是把所有的量看成没有方向的"标量",那么复变函数把一切都看成矢量。那么"i"的意义就必须 是在矢量代数的情形下才存在意义。用一个黎曼球面我们把|z|从0到无穷大的所有的矢量影射到了一个南北极的球面上面,无穷的数域变成了有穷的数域。微分 方程变成指数方程,纯为粉方程类似线形代数的方程组由通解和特解组成解系;指数变成拉伸和旋转,平面几何的问题变成解析几何的问题。

说的太抽象了,举个例子,如何判断两条直线是否垂直,那么z1(角度Theta1)和z2(角度Theta2)互相垂直相当于z1和z2之间的夹角=正负 90度。由于复数的乘法包含了角度的相加,那么z2的共轭矢量角度就是-Theta2。它们两个相乘的结果矢量角就是Theta1-Theta2,如果这 个角度是90度,那么z1*z2'就应该是一个纯虚数,反之,z1*z2'是个纯虚数,就说明z1和z2垂直。所谓的"虚数"并不是不存在,而是它的值在 实数轴x上面的投影总是0。那么写出来就是a+bi与c+di正交的充要条件就是ac+bd=0----看起来像是线形代数里面的[a,b]与[c,d] 互相正交的充要条件是矢量点乘=0。复数,确实是用线形代数的方式在研究高等数学,把函数的研究统一到了解析几何。这里,代数和几何没有区别。

再举一个例子,平面几何的命题:一个三角形AB=AC,AB上有线段mn,AC上有线段jk,长度mn=长度jk,证明mj的中点x和nk的中点y,连线 垂直于BC。这道题如果用初等数学平面几何的性质,脑袋破了都很难证明,因为平面几何的定理是用语言表述的某种性质,证明的过程也是和人对图形的感性认识 密切相关,例如垂直平分线,等腰三角形,这些自然语言的概念用起来太费劲,而且必须结合图形本身来使用。OK,用复数来证明,使用一个形式语言的演算系 统:

证。复数的函数(复变函数)往往具有对称性的性质。如果f(z)=a0+a1z^1+...+anz^n=X+Yi,那么可以证明,f(z')=X- Yi。有什么作用吗? 如果函数f(z)=0有解a+bi,那么a-bi也是解(显然因为X=Y=0)。复数更重要的特征是矢量的方向性。一个直线过z1,z2的端点,那么方向 就是M(z2-z1),直线方程就可以写成点法式:

z在由x/y两个轴构成的复片面P1上面,那么映射f(z)对应另一个复平面P2,z->f(z)是一个映射,那么每一个z都有一个f(z)对应, 当然不同的z可能对应相同的f(z)值。那么P2上面的点总能找到P1上面的对应点。如果2次多项式f(z)=az^2+bz+c,其中a,b,c都是复 数,那么逆映射总是存在,f(z)=0是P2上面的0点,它总是对应P1上面的2个点,当然这两个点可能重合。一般的,如果不考虑平移的结果,我们假设 f(z)=z^n,按么z->f(z)是一个什么样子的变换呢? 我们把P1平面以0点为圆心切割成n个扇形,每个扇形的圆心角=2Pi/n,那么每个扇形fi都对应f(z)的一个映射平面Pi,于是P1映射到了n个平 面Pi1-Pin上面,Pi1-Pin这n个平面全都相似,每个Pi对应P1上划分的第i个扇形;每个Pi上面的点zi对应P1上面的第i个扇形当中的一 个根。这些根幅度相同,角度等差。也就是说,n阶方程总是有n个复根,当然这些复根当中有些可能是虚部=0因此是实数。我们考虑一个著名的问题,三次曲线 和直线的交点,z^3=3pz+2q,p,q不为0。根据戒指定理我们可以知道f(z)=z^3-3px-q=0总是有解的,这个解写出来就是是两个根号 相加,根号里面还有根号,所以可能是两个共轭复数相加同样得到一个实数。为什么呢? 3次方程=0逆映射回z的平面,3个根必然是沿着单位原对于x轴对称的3个点,所以有一个点一定在实数轴的负半轴,经过平移以后就能得到方程的实数解。这 样就解释清楚了黎曼平面: Pi1-Pin这N个面连接起来构成一个黎曼面PL. PL和原来z的平面P1之间的点构成一一对应关系,一对多的混乱关系得到了解决,复数函数仍然是一一对应。

实变函数可以展开成泰勒级数----本质的意义不在于泰勒级数的导数项,而是在于,函数可以展开成自变量所表达的一个幂级数求和表达式,这个有点像离散结 构里面的P问题。那么对于复数,因为解释函数的方向导数有无数个,所以无法直接表示成泰勒级数,但是仍然可以写成幂级数求和的形式----洛朗级数,同 时,可以把泰勒级数看成洛朗级数在实轴方向上投影的特例。当然,这个时候的幂级数系数不能再用导数来求了(切线逼近法),而是使用一个积分。如何理解这个 积分要从柯西积分公式开始(基于柯西-古萨定理,也就是2维平面的格林公式积分和路径无关的条件)f(x,y)=1,绕着单位圆作对坐标的积分,显 然=0,但是f(x,y)=1绕着单位圆作对弧长,显然=2Pi。复数平面上对z做的积分,微元\\是对弧长作积分,但是积分的结果又可以分解成对x和y分 别作的积分。S(z)dz=0,S(1/z)dz=2Pi*i。那么f(z0)=SL(f(z)/z-z0)dz就是柯西积分公式了,把z0看成变量,把 z写成w,那么就是函数形式的柯西积分公式。

需要很好的考虑几个问题:

1. 我们在把可积函数变成傅立叶级数的时候,曾经强调过,每个分量之间由于是三角函数族的成员,所以构成正交关系,所以显然,分量之间没有重叠,展开式显然唯 一。那么对于泰勒级数和复分析当中的洛朗级数而言,函数的幂级数展开式是否是唯一的? 我们主要到没有任何条件限制规定展开分量之间必须构成正交关系。正交性并不必要,基不需要正交性。z和z^2线性无关(注意是“线性”)因为不存在c1和 c2\\in R,使得c1*z + c2*z^2=0, 对于所有的z属于R都成立(z是变量,可以任意取)。严格的说,“幂分量”不需正交,仅要线性无关即可。反证法,我们假设幂级数的分量之间是线形相关的, 也就是存在常数k1-kn使得(k1(1是角标))k1x+k2x^2+k3x^3+...+knx^n =0。我们又知道前面这个方程,在复数域中仅有n个解,即0点仅有n个。故只有k1=k2=....=kn左端才恒为0(对于任意的z),这就是线性无关 的条件,n任意个,即无穷个x^i都线性无关。当然这里线性空间是一个函数空间,其实x,x^2,...构成其一个基----所以k1-kn都是0, {z^n}构成的分量,是个线性无关的集合(两两之间)。

2. 黎曼平面有什么应用的意义? 除了前面说的,可以建立z和f(z)的一一映射(不论是单值函数还是多值函数)以外,黎曼还有一个重要的发明: 黎曼球面。这个球面把所有的有限的问题(圆)和无限的问题(直线)统一到了一个球面上面。也就是说,无限远的点,无论从原点看过去是哪个方向过来的,现在 都被统一到了黎曼球面的北极点(N)上面。因此,现在,所有的无穷的问题都有了一个用有限的可表示的黎曼球面来研究的可能性的,因此许多初等分析的超越问 题现在都变得可解了。
3. 一起探讨一下直线到圆的思维方式的转变,以及这种转变所可能包含的几何意义。在一元微积分里面,计算定积分的时候用到了牛顿莱布尼茨公式,也就是寻找了 F(x)和F(x)的导数f(x)之间的一种关系,他们在线段长度上面构成一种几何关系,也就是在x0点附近,存在微分关 z0点的一个任意无限小的圆,同时前面加上了一个系数(1/2PI*i),然后在把z0变成变量z,于是我们就得到了柯西积分公式----一维和二维的积 分公式终于得到了统一。

4. 再次讨论级数,柯西积分公式当中f(z)=S(f(w)/w-z)dw,我们在收敛半径之内的单位圆里面,把分母部分(1/w-z)展开成为幂级数,限制 条件是在半径R之内的圆,我们就把f(z)变成了洛朗级数。对比f(z)的复数泰勒级数形式,我们得到(1/n!)f(n')(a)=(1 /2Pi*I)S(f(w)/(w-z)^n+1)*(z-a)^ndz。我们显然可以看到一种集合关系,也就是把f(w)看成常数,g(z)=1 /(w-z)对z求n次导数,我们就得到了gn'(z)=1/(w-z)^(n+1),两边取长度的积分我们就得到了洛朗级数和泰勒级数之间的对应关系, 原先要求f(x)有无穷阶导数,现在这个要求放宽了,只要这个函数可积就可以了。

5. 为什么洛朗级数里面会有复数次幂? 因为对于柯西积分公式而言,要求在闭合路径之内函数解析,但是如果不满足这么严格的条件怎么办? 我们去掉不解析的点,就得到了一些列圆环,这个圆环上作闭合路径包围一定的面积,就是里外两条曲线,外围曲线就是洛朗技术的n>=-1的幂次项,内 围曲线是反方向的环绕无穷原点(很奇怪吗? 只要把z平面映射到黎曼球面上,就会得到这个结论!),是一个负数的积分结果,它的收敛半径相反,我们把z用z的倒数来代替,就得到了和前半部分几乎一样 的表达式。所以洛朗级数的形式是Sigma从n=负无穷到正无穷的形式(完备)。特别的,如果圆环是圆饼,那么内环等于是不存在或者收缩到了一个点,也就 是n<-1的那些负数次幂不存在了,函数解析,得到洛朗级数等于泰勒级数的结论。< font=""></-1的那些负数次幂不存在了,函数解析,得到洛朗级数等于泰勒级数的结论。<>

6. f(x)的可积条件是什么? 是f(x)x在x->无穷的时候,极限=0。如何理解这个结论? 显然limf(x)*x=0必要条件是f(x)是1/x的高阶无穷小。这意味着什么? 因为1/x作为一个被积函数,积分是无穷大,这个结论可以通过把积分看成Sigma(1/x)求和来理解,这个求和是不收敛的。

7. 通过洛朗级数的展开我们看到,函数关于z的幂级数展开释里面,1/z的系数就是对原函数做的一个围线积分。这有什么作用呢? 如果我们求f(z)的某个线积分,我们可以做辅助线来求f(z)的围线积分S1减去f(z)关于辅助线的积分S2。我们构造辅助线使得S2=0或者很容易 求,那么S1是可以通过把f(z)展开成幂级数立刻得到的。因此,难以计算的一维线积分变得可以求解了,幂级数的a(-1)就是传说中的"留数"。如果这 个线积分的积分限是无穷,那么我们就计算相应的无穷远点的留数,这个通过留数定理可解。于是,复分析变成了数学分析的延伸。 再说一个概念从线面方程到复数向量: 黎曼几何

平面上的直线方程怎么写? ax+by=c。但是这个方程很丑陋,我们要写成ax'+by'=0的形式,那么就是直线可以表示为点的取值集合(x',y')。因此x',y'之间的约 束关系就是直线方程,把这个约束写成变量的形式,我们得到(x'=bt,y'=-at+c/b),t是实数。于是平面几何的方程就可以表示为点的集合。这 样做有什么好处? 点值的几何做代数映射,对应就是几何上的各种变换,于是只能用自然语言表示的几何问题现在成了可计算的代数问题了。

复变函数为什么引入了黎曼球面?就是为了把范围无限大的集合限制到范围有限大的集合内,让超越问题变得可能计算。为什么高等数学搞了那么多种变换,总之是 为了让直观不可能计算的问题变得可计算,然后再反变换回去。由递推式(z+z',-i(z-z'),|z|^2-1)/|z|^2+1,可以知道z平面上 面对应球面的点:0对应(0,0,-1),1+i对应(2/3,2/3,1/3)。通过几何观察可以得知,黎曼球面上的圆对应于复数平面上面的圆(黎曼圆 不过N点)或者直线(黎曼圆过N点)。又因为复平面的点和黎曼圆的点一一对应,所以所有的直线在无穷远处必定相交,哪怕是平行线----这就是黎曼几何不 同于欧式几何的一个地方。一个感受就是,通篇没有任何平面几何的图形化证明,没有使用任何平面几何的自然语言表述的公理,一切都是使用代数符号完成的计算 和证明,完成了从感性到理性的认识高度的上升,从平面几何的"形而中",上升到了解析代数的"形而上",完成了从初等数学到高等数学的升级。

  1. 高等数学、线性代数、概率论与数理统计、几何学这些知识可以用来干什么?主要应用有哪些?

  2. 线性代数的本质--对线性空间、向量和矩阵的直觉描述

  3. 理解矩阵背后的现实意义

  4. 数学系和物理系学生有什么差别?

  5. Leibniz 如何想出微积分?(三)

  6. 零除以零在数学中有意义吗?

  7. 算法|人人都该了解的十大算法

}

我要回帖

更多关于 概率论涉及的积分公式 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信