自然对数的这些连分数展开式怎么证明?

本页仅作为文档封面,使用时请直接删除即可

内页可以根据需求调整合适字体及大小

}

说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。

指出与无理数e有关的六个式子的等价关系并予以证明。

关于数e/第二重要极限的几种证明方法

推广了初等数学中“1/2是无理数”和“三角形内角平分线定理”两个推论,并给出了初等数学方法证明。

根据sinx的幂级数展开式和莱布尼茨定理,利用反证法证明了当n为非零整数时,sin(1/n)为无理数。

推导一种带有积分形式余项的Taylor公式,并用这个公式比较简单地证明e是无理数。

素数的平方根之和是一个无理数

文章引入一类广义斐波那契数列,给出其收敛的充分必要条件,并利用该类广义斐波那契数列证明了任何自然数的算术平方根或是自然数或是无理数。

研究循环连分数与二次无理数关系问题 ,首先证明了任何循环连分数皆为二次无理数 ,并给出化循环连分数为二次无理数的一般方

第二换元积分法是求函数不定积分的一种重要方法,具有一定的适用范围,对某些无理函数的积分的求解通常使用该方法。

有些比较复杂的无理函数的积分,用传统的方法求解有困难,甚至无法积分出来,而用组合积分法可以巧妙地解决无法积分的问题。

阐明了求无理函数不定积分的欧拉变换 ,通过选取Q(t)的方法分析了欧拉变换的来龙去脉 ,揭示出欧拉变换的本质 ,减少了教学难

e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:

注:x^y表示x的y次方。

随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。

e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。这个e究竟是何方神圣呢?

在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢?

这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。

我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。

读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什么关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。

如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了。事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事。比如说你知道第一个对数表是谁发明的吗?是纳皮尔(john napier)。没有听说过?这很正常,我也是读到这本书才认识他的。重要的是要下一个问题。你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什么计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。

}

这个公式左边的n指的是所有的自然数,1、2、3、4、5等等,右边的p指的是所有的质数,2、3、5、7、11等等。公式两端都出现的s是一个变量,当s > 1时欧拉乘积公式成立。

数学家经常用大写的希腊字母Σ来表示求和,用大写的希腊字母Π来表示连乘。用这种表达方式,我们可以把欧拉乘积公式简写成下面这样:

然后,我们给出了欧拉乘积公式的证明,它来自对算术基本定理的直接应用。

欧拉乘积公式左边的无穷级数Σ n-s是一个以s为自变量的函数,可以记作ζ(s)(ζ是一个希腊字母,发音zeta)。现在我们把它称为欧拉ζ函数,以后我们会看到它如何变成了黎曼ζ函数。通过研究ζ函数,我们就有可能对质数获得深刻的了解。什么样的了解呢?下面就来举一个例子。

请问:任选两个自然数,它们互质(coprime)的概率是多少?

首先来解释一下,两个自然数互质的意思,就是它们没有共同的质因数,换句话说就是,它们的最大公约数是1。例如2和3互质,2和15互质,但15和21不互质,因为15和21都以3作为质因数。很快可以看出,任意两个不同的质数是互质的,一个质数和一个不以它作为质因数的合数是互质的,1和任意自然数都是互质的。

了解了互质的定义之后,我们如何计算两个自然数互质的概率呢?

可以这样思考。首先,考虑两个自然数有公约数2的概率。这等价于它们都可以表示成2n,而所有可以表示成2n的自然数在所有的自然数当中占据的比例是1/2。因此,任选一个自然数,它可以表示成2n的概率是1/2。而任选两个自然数,它们都可以表示成2n的概率就是1/2的平方,这就是它们有公约数2的概率。那么作为跟这种情况互补的情况,两个自然数没有公约数2的概率,就是1

然后,根据同样的推理,两个自然数没有公约数3的概率,就是1 - 1/3 2。继续下去,两个自然数没有公约数5的概率,就是1 - 1/5 2,如此等等。

最后,两个自然数互质,就等价于它们的公约数既没有2,也没有3,也没有5等等,没有任何一个质数。因此,两个自然数互质的概率等于上面各个概率乘起来,这个表达式等于什么?仔细看一下,你就会发现,它就是s = 2的时候欧拉乘积公式右边那个连乘的倒数!因此,它等于s = 2时欧拉乘积公式左边那个连加的倒数,也就是1/ζ(2)。

真是妙啊!现在问题变成了,ζ(2)等于多少?根据定义,也就是所有自然数的平方倒数的和。请问,它等于多少?

回答是π 2/6,约等于1.6449。咦,在这里为什么会出现圆周率?这当然是有原因的啦。事实上这个等式又是欧拉证明的,这是欧拉的成名作之一。这个证明十分有趣,不过要用到微积分,许多同学们还没有学过,而且这个证明不是我们当前必需的,所以在这里我们就不讲了,有兴趣的同学请自己查阅文献。

对于当前的目的,把ζ(2) = π 2/6代进去,我们就知道了:两个自然数互质的概率等于6/π2!数值计算一下,它约等于60.79%。

这个结论对不对呢?我们还可以用计算机来验证一下。

事实上,如果你学过数值分析,你就会知道这是一个相当粗糙的数值实验。在你考虑全体自然数的性质的时候,32768这个取值上限实在是太小了,小得有点令人发笑。以后我们会讲到一个例子,算到1千亿亿都不足以保证结果成立。我们重复一下,1千亿亿!这是一个令人惊掉下巴的例子。但在这里,令人吃惊的却是,对32768这么小的样本取样,就足以得到十分接近理论值的结果。这说明,两个自然数互质的概率这个问题,随着取样范围的增大,收敛得是非常快的。

你看,我们是不是通过研究ζ函数,对质数的分布获得了惊人的结果?

根据同样的推理,我们很快会发现,任选s个自然数,它们互质的概率就是1/ζ(s)。在这里需要说明一下,三个或更多个自然数互质的意思,是所有这些数的整体的公约数只有1,而不是其中任何两个自然数的公约数也只有1。例如考虑2、3、4这三个自然数,其中的两个数2和4不互质,但这三个数的整体是互质的,这种情况我们把它算作三个数互质。

根据这个定义,你很容易看出,s越大,s个自然数互质的概率就越大。因为随着s的增大,某个质数刚好是s个自然数的共同质因子的可能性,就越来越低了。

ζ函数的角度来考察,也确实应该如此。当s > 1的时候,n -s是一个减函数,所以ζ(s) = Σ nn-s也是一个减函数。随着s的增加,ζ(s)在减小,所以ζ(s)的倒数在增大,也就是说s个自然数互质的概率在增大。

好,现在让我们把视线投向任意正整数s对应的ζ(s)。

在这里可以告诉大家,对于正的偶数s,ζ(s)是可以快速求出的,而且其中总是包含圆周率π的s次方。例如ζ(4),也就是所有自然数的四次方的倒数之和,它等于π 4/90,约等于1.0823。由此可以算出,四个自然数互质的概率等于90/π4,约等于92.39%。

然而对于正的奇数s,ζ(s)的计算就会变得非常麻烦,很难有个简单的表达式。例如对于ζ(3),也就是所有自然数的三次方的倒数之和,我们就只能说它约等于1.2021。你要是想把它精确地表示出来,就只有一些比较复杂的积分或者无穷级数或者连分数的表达形式。

无论如何,根据ζ(3) ≈ 1.2021,我们可以算出三个自然数互质的概率约等于83.19%。从两个自然数互质的概率60.79%,到三个自然数互质的概率83.19%,到四个自然数互质的概率92.39%,我们看到它们确实是在上升的,符合预期。

随着s趋于无穷大,ζ(s) = Σn n -s当中只有第一项1不受影响,后面的项都迅速地趋近于0,所以ζ(s)会趋近于1。相应的,s个自然数互质的概率也确实会趋近于100%,这都是很容易理解的。

你也许会问:s只能取整数值吗?当然不是,它完全可以取3/2(也就是1.5)或者1.6或者π等非整数的值。对于非整数的s,ζ(s)仍然是有明确定义的,只不过这时不能跟所谓“s个自然数互质的概率”联系起来了。你可以计算ζ(3/2),它约等于2.6124,但你无法谈论所谓“1.5个自然数”。

如果你对分数指数感到迷惑,请翻一下高中数学课本就知道了。这里可以提示一下,一个数的3/2次方,等于它的三次方的平方根。而一个数的π次方,就等于它的3次方、3.1次方、3.14次方、3.141次方、3.1415次方、3.14159次方等等这个数列的极限。

现在,我们对ζ函数增加了许多了解,明白了它跟质数有深刻的联系,并且知道了它在若干个点上的取值。现在,你是不是对这个函数感到很亲切,而不会感到恐惧了?

不过我们必须强调一下,到目前为止,所有的s都是大于1的。你也许会问,ζ(1)等于多少?也就是说,所有自然数的倒数和等于多少?在数学上,我们又把它称为调和级数(harmonic series)。

现在,一个关键点来了:ζ(1)等于无穷大!也就是说,调和级数是发散的!

为什么会这样?让我们把ζ(1)的表达式写出来,就能够做下面的推理:

最后那个式子中,随着项数的增加,会出现无穷多个1/2。无穷多个1/2加起来当然会大于任意的有限值,因此最后的式子是发散的。而ζ(1)比它还要大,所以当然也是发散的。

如果你觉得上面的表达方式不太严格,那么我们真正想表达的意思是:对于任意大的自然数k,都有下面的不等式。

实际上,调和级数虽然是发散的,但它发散得非常慢。把前面的10的43次方项加起来,都没有超过100。10的43次方是多少?一亿是10的8次方,所以10的43次方就是1千亿亿亿亿亿。用物理世界举个例子,整个宇宙的半径大约是137亿光年,量级是10的26次方米,一个原子核的半径是10的-15次方米的量级,宇宙半径除以原子核半径也不过是10的41次方而已,还要再乘以100才能达到10的43次方。想想看,1千亿亿亿亿亿个数加起来,都没超过100!这是怎样的一种增长速度啊!

为什么会这样呢?原因又是欧拉告诉我们的。欧拉证明了,调和级数的增长速度,大致就是自然对数的增长速度。如果你没学过自然对数,那么可以简单解释一下:常用对数(经常写成lg)是以10为底的对数,而自然对数(经常写成ln)是以e为底的对数,这里的e是一个常数,约等于2.71828。为什么要以这样一个数为底?因为在数学上,lnx具有许多很好的性质,处理起来比lgx方便得多。其实在数学中,自然对数才是“常用”的,比所谓“常用对数”常用得多。

更具体地说,欧拉证明了,调和级数的前n项之和约等于lnn,而随着n的增大,它们的差值会趋近于一个常数γ:

这个常数叫什么名字呢?当然,又叫做欧拉常数(Euler’s constant)……咦,我为什么要说“又”呢?

我们可以用两个面积的差来形象地表现欧拉常数。一个面积是一系列的矩形之和,它们的宽度都是1,而高度从1到1/2,到1/3,到1/4,如此等等,一路下降。另一个面积是y = 1/x即倒数函数曲线下面的面积,即图中的深红色部分,数学家会告诉你,它就等于lnx。这两个面积的差,就是图中的蓝色部分。

你会看到,在每一个矩形中,矩形的面积都大于倒数函数曲线下方的面积,但相差得越来越小。当x趋于无穷的时候,蓝色部分的面积就趋于一个有限值,它等于欧拉常数。

了解了调和级数即ζ(1)的发散性质以后,让我们回到欧拉乘积公式。在上一期中我们说过,欧拉乘积公式只在s > 1的时候成立。有人会问,欧拉乘积公式的推导过程好像跟s完全没有关系,那么它是不是对于任意的s都成立呢?回答是:不行,只有对大于1的s才成立。

这是因为我们的推导过程有一个前提,就是ζ(s)是一个有限值,或者说ζ(s)是收敛的。只有在这个前提下,才能把它当成一个正常的数进行种种操作。但假如ζ(s)是发散的,那么这样的操作就毫无意义,有可能导致各种各样的错误。例如你经常听说的所谓“全体自然数的和等于-1/12”,就是这样的一个错误!

在欧拉那个时代,许多数学知识的基础定义还不够严格,数学家还经常搞一些有越界之嫌的操作,欧拉就搞了不少。而现代的数学家是非常注重严格性的,他们给你看的证明,一定都是保证了可靠性,每一步都有精确定义的。我虽然不是数学家,但我给你看的证明,也一定是保证了可靠性的。

既然ζ(1)是发散的,那么你很容易发现,当s < 1的时候,ζ(s)会变得更大,当然就更是发散的了。因此,对欧拉ζ函数的研究,只能在s > 1的范围内进行。从中我们确实能得到一些有趣的结论,例如s个自然数互质的概率等于1/ζ(s),但这些毕竟还是对质数分布的间接了解,直接的了解还很欠缺。

如何才能对质数的分布获得更加深入的了解呢?

我们的大事件来了:你的好友黎曼已上线!欧拉ζ函数升级为黎曼ζ函数!

纪念施皖雄,纯粹数学家都是一往无前的勇者 | 科技袁人

理解黎曼猜想(一)背景 | 袁岚峰

理解黎曼猜想(二)两个自然数互质的概率是多少?| 袁岚峰

理解黎曼猜想(三)你真的相信全体自然数的和等于-1/12吗?| 袁岚峰

理解黎曼猜想(四)得救之道,就在其中 | 袁岚峰

理解黎曼猜想(五)宇宙的密码 | 袁岚峰

理解黎曼猜想(六)朝闻道 | 袁岚峰

黎曼猜想(一)每出现一个数学公式,就会吓跑一半观众?如何打破“跳蚤效应” | 科技袁人

}

我要回帖

更多关于 分数怎么变成对数 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信