为什么要加一个int price=0?

前面两篇文章分别讲解了 和 的 TWAP。Chainlink 属于 链下预言机 ,其价格源取自多个交易所,但所支持的 token 比较有限,主要适用于获取主流 token 的价格。UniswapV2 的 TWAP 则是 链上预言机 ,可适用于获取 Uniswap 上已有的任何 token 价格,主要缺陷就是需要链下程序定时触发更新价格,存在维护成本。UniswapV3 的 TWAP 则解决了这个缺陷问题,本文就来聊聊 UniswapV3 的 TWAP 机制,以及如何正式使用。

UniswapV3 则改为用一个容量可达 65535 的数组来存储历史数据,即 UniswapV3Pool 合约的 observations 状态变量,另外,触发数据的存储也不再需要链下程序去定时触发,而是在 Uniswap 发生交易时自动触发。

其次,对所存储的预言机数据 observations 的相关操作,基本封装在了 Oracle 库,其 github 的代码地址如下:

Oracle 库中,定义了数据结构 Observation ,即存储预言机数据的数据结构:

tick 是 UniswapV3 引入的新概念,因为在 UniswapV3 中,LP 提供的流动性是分为多个不同区间的,那为了方便计算不同区间的流动性和手续费分配,UniswapV3 就将整个价格范围划分为了多个离散的价格点,这些价格点就称为 tick ,每个价格点 tick 都对应于一个实际价格,两者的关系可以表示如下:

该公式表明了,当 tick 为 0 时,价格为 1;当 tick 为 1 时,价格为 1.0001;当 tick 为 2 时,价格为 1.0001^2。也即是说,相邻价格点之间的价差为 0.01%。当然,tick 也可以为负值,为负值时表明价格 p 小于 1。

结构体的数组,该数组主要就是存储历史的累计值。slot0 则记录了当前的一些状态值,sqrtPriceX96 即当前的根号价格,tick 即当前价格对应的价格点,observationIndex 是 observations

TWAP 的时间窗口为 1 小时,那如果是在 Layer1 的话,因为出块时间平均为 10 几秒,那 1 小时出块最大上限也不会超过 360,即是说扩容的容量最大也不需要超过 360。而如果是用在 Layer2 的话,因为 Layer2 定序器的原因,以 Arbitrum 为例,每隔 1 分钟才会有一次时间戳的更新,所以理论上,1 小时的 TWAP 只要有 60 的容量就足够,可以增加一点冗余扩容到 70。

扩展了容量之后,添加流动性、移除流动性、兑换的时候,一般都会调用 Oracle 库的 write 函数,来实现更新 observations 数据。在 write 函数中,会有一个时间戳的判断,当上一个 Observation 的时间戳和当前时间戳一致的时候,则不会更新。因此,在 Layer1 中,每个区块只会发生一次更新 observations;而在 Layer2,因为时间戳 1 分钟才会更新一次,所以也是 1 分钟才会发生一次更新 observations。

有了这些基础之后,就可以开始查询和计算 TWAP 了。

该函数指定的参数 secondsAgos 是一个数组,数组的每个元素可以指定离当前时间之前的秒数。比如我们想要获取最近 1 小时的 TWAP,那可传入数组 [3600, 0],会查询两个时间点的累计值,3600 表示查询 1 小时前的累计值,0 则表示当前时间的累计值。返回的 tickCumulatives 就是对应于入参数组的每个时间点的 tick 累计值,secondsPerLiquidityCumulativeX128s 则是对应每个时间点的每秒流动性累计值,这个一般很少用到,所以就不展开讲了。

得到了这两个时间点的 tickCumulatives 之后,就可以算出平均加权的 tick 了。以 1 小时的时间间隔为例,计算平均加权的 tick 公式为:

计算得到 averageTick 之后,还需要将其转换为价格,这时就需要使用另一个库 TickMath

接着,我们来看看,若要计算最近 1 小时的 TWAP 的代码大致是怎样的:

该函数用来获取指定 pool 在最近 1 小时内的时间加权平均价格,且表示为 sqrtPriceX96 的价格。

该函数要可行的话,主要有两个前提,一是该 pool 的 observations 已经有足够的扩容,二是扩容之后该池子已经交易了至少 1 小时。如果不满足这两个条件,在调用 pool.observe(secondsAgos) 函数时一般就会报错,因为会读取不到 1 小时前的 observation 数据。即是说,在扩容后的第一个 TWAP 时间窗口内,TWAP 本身其实是不可用的。如果 TWAP 的时间窗口是 24 小时,那就意味着前 24 个小时的 TWAP 都处于不可用的状态了。如果想让 TWAP 在第一个时间窗口内也可用的话,那就需要对以上实现进行优化。

要让第一个时间窗口内可用的话,其实也简单,在这第一个时间窗口内,计算 TWAP 的时间间隔不再是完整的一个时间窗口,而是 observations 数组中离当前时间最久的那个 observation 到目前为止的时间差

了,而是离当前最近的元素的下一个元素。

当前元素的索引为 index ,那下一个元素的索引,一般就是 (index + 1)** 但如果当前的 index 已经是当前容量的最后一个元素,那下一个元素索引其实就会回到了 0。因此,要获取下一个元素,精确的索引值应该为: (index + 1) % cardinality** 。

下面就是优化后的代码实现:

其中,还有几个关键逻辑需要补充说明下。

第三行代码中,读取出索引值为 (index + 1) % cardinality 的元素之后,其会返回一个布尔值 initialized ,如果该值为 false,则表示该元素还没被初始化,因此目标元素则改为了获取索引值为 0 的元素。

targetElementTime 就是目标元素记录累计值时的时间戳,当前时间戳减去该时间戳,就得到了目标元素离当前时间的时间差 delta 。如果 delta 为 0 的话,那可以直接返回当前的 sqrtPriceX96 即可。否则,如果 delta 小于计算 TWAP 的时间间隔

如此一来,在 TWAP 的第一个时间窗口内也同样可以读取到 TWAP 了。

我们知道,在 UniswapV2 中,每个币对就组成了一个池子,即指定的 token0 和 token1 有且仅有一个 Pool。但在 UniswapV3 中,每个池子的唯一性组成,除了 token0 和 token1,还多了一个 手续费率 ,不同费率的币对分开为了不同的池子。所以,在实际应用中,很多情况下还需要针对不同费率的池子做过滤处理,寻找出最优的池子作为预言机的价格源。

在实际应用中,可能有不同维度来衡量哪个池子是最优的。但大部分场景下,可以认为 TVL 最高的池子就是最优的池子,但从合约层面计算得到 TVL 不太方便。好在,合约层面可以方便地读取到当前的流动性 liquidity,所以也可以将此作为一个参考值,即 liquidity 最高的池子,也可以认为是最优的池子。

那么,获取最优池子的代码实现逻辑可以大致如下:

其逻辑其实很简单,就是对同个币对的每个手续费率都进行遍历,如果池子不为空且 liquidity 最高的池子就是目标池子。

一般来说,只要确定了目标池子之后,后续就不再需要重新遍历不同费率的池子了,可以将该目标池子绑定为固定的价格源池子。

如果频繁地遍历不同费率的池子,反而存在安全风险,因为攻击者可以通过闪电贷等方式短期内操控某个费率的池子,可能可以瞬间达到最高的流动性,这时候如果选中了被攻击者操控的池子作为了价格源池子,那安全风险就极高了。

简而言之,使用 UniswapV3 的价格预言机,一般来说,可总结为以下几个步骤:

  1. 遍历同个币对不同手续费率的池子,找出流动性 liquidity 最高的池子作为价格源的目标池子;
  2. 指定目标池子和 TWAP 的时间窗口,调用封装的 getSqrtTWAP 函数计算得到扩展后的加权平均根号价格 sqrtPriceX96
  3. 根据实际需要将 sqrtPriceX96 转换为其他格式的价格。
}

提起函数式编程,大家一定想到的是语法高度灵活和动态的LISP,Haskell这样古老的函数式语言,往近了说ruby,javascript,F#也是函数式编程的流行语言。然而.net自从支持了lambda表达式,C#虽然作为一种指令式程序设计语言,在函数性编程方面也毫不逊色。我们在使用c#编写代码的过程中,有意无意的都会使用高阶函数,组合函数,纯函数缓存等思想,连表达式树这样的idea也来自函数式编程思想。所以接下来我们把常用的函数式编程场景做个总结,有利于我们在程序设计过程中灵活应用这些技术,拓展我们的设计思路和提高代码质量。

高阶函数通俗的来讲:某个函数中使用了函数作为参数,这样的函数就称为高阶函数。根据这样的定义,.net中大量使用的LINQ表达式,Where,Select,SelectMany,First等方法都属于高阶函数,那么我们在自己写代码的时候什么时候会用到这种设计?

举例:设计一个计算物业费的函数,var fee=square*price, 而面积(square)根据物业性质的不同,计算方式也不同。民用住宅,商业住宅等需要乘以不同的系数,根据这样的需求我们试着设计下面的函数:

return (width, hight) => width * hight*中的表达式树),部分应用,组合函数,这些思想有的我也仍然在学习中,有的还在思考其最佳使用场景,所以不再总结,如果哪天领会了其思想会补充。

最后我还是想设计一个场景,把高阶函数,lambda表达式,泛型方法结合在一起,我之所以设计这样的例子是因为现在很多的框架,开源的项目都有类似的写法,也正是因为各种技术和思想结合在一起,才有了极富有表达力并且非常优雅的代码。

需求:设计一个单词查找器,该查找器可以查找某个传入的model的某些字段是否包含某个单词,由于不同的model具有不同的字段,所以该查找需要配置,并且可以充分利用vs的智能提示。

这个功能其实就两个方法:

该案例本身不具有实用性,但是大家可以看到,正是各种技术的综合应用才设计出极具语义的api, 如果函数参数改为Expression<Func<TModel,TProperty>> 类型,我们还可以读取到具体的属性名称等信息。

结束语:本文总结了比较常用的函数式编程思想,有了这些设计思想可以扩充你的编程思路,也有利于编写更出色的代码。

}

[转] 彻底了解指针数组,数组指针,以及函数指针,以及堆中的分配规则

一 :关于指针和堆的内存分配

先来介绍一下指针: 指针一种类型,理论上来说它包含其他变量的地址,因此有的书上也叫它:地址变量。既然指针是一个类型,是类型就有大小,在达内的服务器上或者普通的PC机上,都是4个字节大小,里边只是存储了一个变量的地址而已。不管什么类型的指针,char * ,int * ,int (*) ,string * ,float * ,都是说明了本指针所指向的地址空间是什么类型而已,了解了这个基本上所有的问题都好象都变的合理了。

在C++中,申请和释放堆中分配的存贮空间,分别使用new和delete的两个运算符来完成:

指针类型 指针变量名 = new 指针类型 (初始化);

区别:p所指向的变量是由库操作符new()分配的,位于内存的堆区中,并且该对象未命名。

下面是关于new 操作的说明 : 部分引自《C++面向对象开发》

1、new运算符返回的是一个指向所分配类型变量(对象)的指针。对所创建的变量或对象,都是通过该指针来间接操作的,而动态创建的对象本身没有名字。

2、一般定义变量和对象时要用标识符命名,称命名对象,而动态的称无名对象(请注意与栈区中的临时对象的区别,两者完全不同:生命期不同,操作方法不同,临时变量对程序员是透明的)。

3、堆区是不会在分配时做自动初始化的(包括清零),所以必须用初始化式(initializer)来显式初始化。new表达式的操作序列如下:从堆区分配对象,然后用括号中的值初始化该对象。

指针变量名=new 类型名[下标表达式];

注意:“下标表达式”不是常量表达式,即它的值不必在编译时确定,可以在运行时确定。这就是堆的一个非常显著的特点,有的时候程序员本身都不知道要申请能够多少内存的时候,堆就变的格外有用。

注意:方括号非常重要的,如果delete语句中少了方括号,因编译器认为该指针是指向数组第一个元素的,会产生回收不彻底的问题(只回收了第一个元素所占空间),我们通常叫它“内存泄露”,加了方括号后就转化为指向数组的指针,回收整个数组。delete [ ]的方括号中不需要填数组元素数,系统自知。即使写了,编译器也忽略。>上说过以前的delete []方括号中是必须添加个数的,后来由于很容易出错,所以后来的版本就改进了这个缺陷。

下面是个例子,VC上编译通过

通过指针使堆空间,编程中的几个可能问题

1.动态分配失败。返回一个空指针(NULL),表示发生了异常,堆资源不足,分配失败。

2.指针删除与堆空间释放。删除一个指针p(delete p;)实际意思是删除了p所指的目标(变量或对象等),释放了它所占的堆空间,而不是删除p本身,释放堆空间后,p成了空悬指针,不能再通过p使用该空间,在重新给p赋值前,也不能再直接使用p。

3.内存泄漏(memory leak)和重复释放。new与delete 是配对使用的, delete只能释放堆空间。如果new返回的指针值丢失,则所分配的堆空间无法回收,称内存泄漏,同一空间重复释放也是危险的,因为该空间可能已另分配,而这个时候又去释放的话,会导致一个很难查出来的运行时错误。所以必须妥善保存new返回的指针,以保证不发生内存泄漏,也必须保证不会重复释放堆内存空间。

4.动态分配的变量或对象的生命期。无名变量的生命期并不依赖于建立它的作用域,比如在函数中建立的动态对象在函数返回后仍可使用。我们也称堆空间为自由空间(free store)就是这个原因。但必须记住释放该对象所占堆空间,并只能释放一次,在函数内建立,而在函数外释放是一件很容易失控的事,往往会出错,所以永远不要在函数体内申请空间,让调用者释放,这是一个很差的做法。你再怎么小心翼翼也可能会带来错误。

通过new建立的对象要调用构造函数,通过deletee删除对象要调用析构函数。

堆对象的生命期并不依赖于建立它的作用域,所以除非程序结束,堆对象(无名对象)的生命期不会到期,并且需要显式地用delete语句析构堆对象,上面的堆对象在执行delete语句时,C++自动调用其析构函数。

正因为构造函数可以有参数,所以new后面类(class)类型也可以有参数。这些参数即构造函数的参数。

但对创建数组,则无参数,并只调用缺省的构造函数。见下例类说明:

 CGoods(){}; //缺省构造函数。因已有其他构造函数,系统不会再自动生成缺省构造,必须显式声明。  

申请堆空间之后构造函数运行;

释放堆空间之前析构函数运行;

再次强调:由堆区创建对象数组,只能调用缺省的构造函数,不能调用其他任何构造函数。如果没有缺省的构造函数,则不能创建对象数组。

---------------------下面我们再来看一下指针数组和数组指针―――――――――――――

如果你想了解指针最好理解以下的公式 :

(1)指针数组:一个数组里存放的都是同一个类型的指针,通常我们把他叫做指针数组。

比如 int * a[10];它里边放了10个int * 型变量,由于它是一个数组,已经在栈区分配了10个(int * )的空间,也就是32位机上是40个byte,每个空间都可以存放一个int型变量的地址,这个时候你可以为这个数组的每一个元素初始化,在,或者单独做个循环去初始化它。

但是我不建议达内的学生这么写,可能会造成歧义,不是好的风格,并且在VC中会报错,应该写成如下 :

这样申请内存的风格感觉比较符合大家的习惯;由于是数组,所以就不可以delete a;编译会出警告.delete  a[1];

( 2 ) 数组指针 : 一个指向一维或者多维数组的指针;

注意,这个时候释放空间一定要delete [] ,否则会造成内存泄露, b 就成为了空悬指针.

注意:在这里,b2等效于二维数组名,但没有指出其边界,即最高维的元素数量,但是它的最低维数的元素数量必须要指定!就像指向字符的指针,即等效一个字符串,不要把指向字符的指针说成指向字符串的指针。这与数组的嵌套定义相一致。

      两个数组都是由600个整数组成,前者是只有一个元素的三维数组,每个元素为30行20列的二维数组,而另一个是有30个元素的二维数组,每个元素为20个元素的一维数组。

再次重申:这里的b2的类型是int (*) ,这样表示一个指向二维数组的指针。

b3表示一个指向(指向二维数组的指针)的指针,也就是三级指针.

( 3 ) 二级指针的指针

注意此地方的指针类型为int (*),碰到这种问题就把外边的[2]先去掉,然后回头先把int ** p=new int(*)[n]申请出来,然后再把外边的[2]附加上去;

p代表了一个指向二级指针的指针,在它申请空间的时候要注意指针的类型,那就是int (*)代表二级指针,而int (**)顾名思义就是代表指向二级指针的指针了。既然是指针要在堆里申请空间,那首先要定义它的范围:(int(*)[n])[2],n 个这样的二级指针,其中的每一个二级指针的最低维是2个元素.(因为要确定一个二级指针的话,它的最低维数是必须指定的,上边已经提到)。然后我们又分别为p[0],p[1],p[2]…在堆里分配了空间,尤其要注意的是:在释放内存的时候一定要为p[0],p[1],p[2],单独delete[] ,否则又会造成内存泄露,在delete[]p 的时候一定先delete p[0]; delete p[1],然后再把给p申请的空间释放掉 delete [] p ……这样会防止内存泄露。

int ** cc=new (int*)[10]; 声明一个10个元素的数组,数组每个元素都是一个int *指针,每个元素还可以单独申请空间,因为cc的类型是int*型的指针,所以你要在堆里申请的话就要用int *来申请;

看下边的例子  (vc & GNU编译器都已经通过);

注意 :因为a 是在堆里申请的无名变量数组,所以在delete 的时候要用delete [] 来释放内存,但是a的每一个元素又单独申请了空间,所以在delete [] a之前要先delete [] 掉 a[0],a[1],否则又会造成内存泄露.

我们再来看看第二种 :二维指针数组

如果你对上边的介绍的个种指针类型很熟悉的话,你一眼就能看出来c是个二级指针,只不过指向了一个二维int * 型的数组而已,也就是二维指针数组。

 这里只为大家还是要注意内存泄露的问题,在这里就不再多说了。

如果看了上边的文章,大家估计就会很熟悉,这个b是一个二维指针,它指向了一个指针数组

   d不管怎样变终究也是个数组,呵呵,

   如果你读懂了上边的,那下边的声明就很简单了:

具体的就不再多说了 :)

关于函数指针,我想在我们可能需要写个函数,这个函数体内要调用另一个函数,可是由于项目的进度有限,我们不知道要调用什么样的函数,这个时候可能就需要一个函数指针;

int a();这个一个函数的声明;

ing (*b)();这是一个函数指针的声明;

让我们来分析一下,左边圆括弧中的星号是函数指针声明的关键。另外两个元素是函数的返回类型(void)和由边圆括弧中的入口参数(本例中参数是空)。注意本例中还没有创建指针变量-只是声明了变量类型。目前可以用这个变量类型来创建类型定义名及用sizeof表达式获得函数指针的大小:

// 为函数指针声明类型定义

PFUNC是一个函数指针,它指向的函数没有输入参数,返回int。使用这个类型定义名可以隐藏复杂的函数指针语法,就我本人强烈建议我们大内弟子使用这种方式来定义;

下面是一个例子,一个简单函数指针的回调(在GNU编译器上通过,在VC上需要改变一个头文件就OK了)

到目前为止,我们只讨论了函数指针及回调而没有去注意ANSI C/C++的编译器规范。许多编译器有几种调用规范。如在Visual C++中,可以在函数类型前加_cdecl,_stdcall或者_pascal来表示其调用规范(默认为_cdecl)。C++ Builder也支持_fastcall调用规范。调用规范影响编译器产生的给定函数名,参数传递的顺序(从右到左或从左到右),堆栈清理责任(调用者或者被调用者)以及参数传递机制(堆栈,CPU寄存器等)。

好了,先到此为止吧,写这篇文章耗费了基本上快半天的时间了,很多事情还没有做,等改天有时间再回来整理,所有的源程序都放在openlab3服务器上我的目录下lib/cpp下,大家可以去拿。不知道的登陆openlab3 然后cd ~chengx/lib/cpp就可以看到了。

还有很复杂的声明可能也是一种挑战 比如>里的

int (*(*f4())[10]();的声明,f4是一个返回指针的函数,该指针指向了含有10个函数指针的数组,这些函数返回整形值;不是这个函数有特别之处,而是Bruce Eckel 说的“从右到左的辨认规则”是一种很好的方法,值得我们去学习,感谢他:)

最后我想应该跟大家说一下,写程序应该就象JERRY所说的:简单就是美;我们应该遵循一个原则 : KISS (Keep It Simple,Stupid ,尽量保持程序简单 出自 :《Practical C programming》),把自己的程序尽量的简单明了,这是个非常非常好的习惯。


数组指针与指针数组区别

定义了一个数组指针,这个指针与一般的指针没有什么区别,仅仅是这个指针指向一个数组。这里我们把数组作为了基本的元素处理。也就是说,将整个数组作为一种类型,而数组名就是这个类型的一个具体变量。例如:
一个数组类型,形状就是这样:int [10];a就是新定义的一个变量。

一个数组类型,形状就是这样:int [3];b就是新定义的一个变量。

因为这两个类型形状不一样,因此是两个不同的类型,因此a,b就是不同类型的变量。这就好比int a和double b :a和b不一样。不知道大家是否已经对数组类型有了基本的印象?

那么把数组名作为该数组类型的一个具体变量,我们就可以定义指向这个变量的指针,即数组指针。

对于数组类型:int [10],我们可以定义一个指针,int (*p) [10].注意这里一定要加上小括弧。否则就会变成了指针数组。定义了指针之后,我们可以对该指针赋值,如p=&a;如果定义了一个二维数组,int

们也可以让这样的int成为其他的基本类型或者是扩展类型,只不过改变的跳

关于程序内存的管理,经常遇到这么的问题,c/c++中关于变量的分配与保存位置. 

变量的类型和存贮类别是两个不同的概念.

程序中一般包括以下几个存贮区域:

1.栈(Stack),该区域主要存贮函数的参变量以及程序中的局部变量.具体的操作由编译器释放.

2.堆(heap),这部分由程序员自己分配和释放,如果程序中没有释放该空间,程序结束后由系统回收.通常的memory leak就是由这部分操作不善而产生的.

3.全局变量区,这部分主要是保存全局变量和静态变量.其中分为初始化的全局变量和未初始化的全局变量,不过这两个区域是相邻的.该区域程序结束后由系统释放.

4.文字常量区,保存程序中的常量字符串,由系统来释放.

5.代码区域,保存程序的二进制代码.

 这是一个前辈写的,非常详细 

二、堆和栈的理论知识 

由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。  

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。  

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

栈由系统自动分配,速度较快。但程序员是无法控制的。  

堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.  

另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活

2.5堆和栈中的存储内容

栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

 堆和栈的区别可以用如下的比喻来看出:

 使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。

 使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

 堆和栈的区别主要分:
操作系统方面的堆和栈,如上面说的那些,不多说了。

还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。  


预备知识—程序内存分配
一个由C/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。

一个正常的程序内存中通常分为程序段,数据端和堆栈三部分。程序段里放着程序的机器码和只读数据,这个段通常是只读,对它的写操作是非法的。数据段放的是程序中的静态数据。动态数据则通过堆栈来存放。在内存中,它们的位置如下:
堆栈是内存中的一个连续的块。一个叫堆栈指针的寄存器(SP)指向堆栈的栈顶。堆栈的底部是一个固定地址。堆栈有一个特点就是,后进先出。也就是说,后放入的数据第一个取出。它支持两个操作,PUSH和POP。PUSH是将数据放到栈的顶端,POP是将栈顶的数据取出。
在高级语言中,程序函数调用和函数中的临时变量都用到堆栈。为什么呢?因为在调用一个函数时,我们需要对当前的操作进行保护,也为了函数执行后,程序可以正确的找到地方继续执行,所以参数的传递和返回值也用到了堆栈。通常对局部变量的引用是通过给出它们对SP的偏移量来实现的。另外还有一个基址指针(FP,在Intel芯片中是BP),许多编译器实际上是用它来引用本地变量和参数的。通常,参数的相对FP的偏移是正的,局部变量是负的。
程序中发生函数调用时,计算机做如下操作:首先把参数压入堆栈;然后保存指令寄存器(IP)中的内容,做为返回地址(RET);第三个放入堆栈的是基址寄存器(FP);然后把当前的栈指针(SP)拷贝到FP,做为新的基地址;最后为本地变量留出一定空间,把SP减去适当的数值。

在函数体中定义的变量通常是在栈上,用malloc, calloc, realloc等分配内存的函数分配得到的就是在堆上。在所有函数体外定义的是全局量,加了static修饰符后不管在哪里都存放在全局区(静态区),在所有函数体外定义的static变量表示在该文件中有效,不能extern到别的文件用,在函数体内定义的static表示只在该函数体内有效。另外,函数中的"adgfdf"这样的字符串存放在常量区。

栈:栈存在于RAM中。栈是动态的,它的存储速度是第二快的。stack
堆:堆位于RAM中,是一个通用的内存池。所有的对象都存储在堆中。heap

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

6 堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

heap:是由malloc之类函数分配的空间所在地。地址是由低向高增长的。
stack:是自动分配变量,以及函数调用的时候所使用的一些空间。地址是由高向低减少的。

预备知识—程序的内存分配

一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。

由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
需要程序员自己申请,并指明大小,在c中malloc函数
但是注意p1、p2本身是在栈中的。2.2
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便
.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度,也最灵活
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。2.6存取效率的比较

堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

}

我要回帖

更多关于 integrate into 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信