y=2×9^x+3^x-4 求Y=AX的分布在x[-3,5]上的值域

高一数学求值域方法
  高一数学求值域方法,高一数学函数求值域的方法其实很简单,下面就为大家整理了高一求值域方法及例题,希望可以帮助大家!
  高一数学函数值域解题技巧[1]
  一.观察法
  通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
  例1求函数y=3+√(2-3x) 的值域。
  点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
  解:由算术平方根的性质,知√(2-3x)≥0,
  故3+√(2-3x)≥3。
  ∴函数的知域为 .
  点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
  本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
  练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})
  二.反函数法
  当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
  例2求函数y=(x+1)/(x+2)的值域。
  点拨:先求出原函数的反函数,再求出其定义域。
  解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。
  练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})
  三.配方法
  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
  例3:求函数y=√(-x2+x+2)的值域。
  点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
  解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
  ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]
  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
  练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})
  四.判别式法
  若可化为关于某变量的.二次方程的分式函数或无理函数,可用判别式法求函数的值域。
  例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
  点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
  解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)
  当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2
  当y=2时,方程(*)无解。∴函数的值域为2
  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。
  练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。
  五.最值法
  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
  例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
  点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
  解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
  ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。
  当x=-1时,z=-5;当x=3/2时,z=15/4。
  ∴函数z的值域为{z∣-5≤z≤15/4}。
  点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。
  练习:若√x为实数,则函数y=x2+3x-5的值域为 ( )
  A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
  (答案:D)。
  六.图象法
  通过观察函数的图象,运用数形结合的方法得到函数的值域。
  例6求函数y=∣x+1∣+√(x-2)2 的值域。
  点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
  解:原函数化为 -2x+1 (x≤1)
  y= 3 (-1
  2x-1(x>2)
  它的图象如图所示。
  显然函数值y≥3,所以,函数值域[3,+∞]。
  点评:分段函数应注意函数的端点。利用函数的图象
  求函数的值域,体现数形结合的思想。是解决问题的重要方法。
  求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。
  七.单调法
  利用函数在给定的区间上的单调递增或单调递减求值域。
  例1求函数y=4x-√1-3x(x≤1/3)的值域。
  点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。
  解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x
  在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。
  点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
  练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})
  八.换元法
  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
  例2求函数y=x-3+√2x+1 的值域。
  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
  解:设t=√2x+1 (t≥0),则
  x=1/2(t2-1)。
  于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
  所以,原函数的值域为{y|y≥-7/2}。
  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
  练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}
  九.构造法
  根据函数的结构特征,赋予几何图形,数形结合。
  例3求函数y=√x2+4x+5+√x2-4x+8 的值域。
  点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。
  解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22
  作一个长为4、宽为3的矩形ABCD,再切割成12个单位
  正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
  KC=√(x+2)2+1 。
  由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共
  线时取等号。
  ∴原函数的知域为{y|y≥5}。
  点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
  练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})
  十.比例法
  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
  例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
  点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。
  解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)
  ∴x=3+4k,y=1+3k,
  ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
  当k=-3/5时,x=3/5,y=-4/5时,zmin=1。
  函数的值域为{z|z≥1}.
  点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。
  练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
  十一.利用多项式的除法
  例5求函数y=(3x+2)/(x+1)的值域。
  点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。
  解:y=(3x+2)/(x+1)=3-1/(x+1)。
  ∵1/(x+1)≠0,故y≠3。
  ∴函数y的值域为y≠3的一切实数。
  点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
  练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)
  十二.不等式法
  例6求函数Y=3x/(3x+1)的值域。
  点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。
  解:易求得原函数的反函数为y=log3[x/(1-x)],
  由对数函数的定义知 x/(1-x)>0
  1-x≠0
  解得,0
  ∴函数的值域(0,1)。
  点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。
  以下供练习选用:求下列函数的值域
  1.Y=√(15-4x)+2x-5;({y|y≤3})
  2.Y=2x/(2x-1)。 (y>1或y<0)
  高一数学求值域方法[2]
  1.确定函数定义域的主要依据:
  (1)当f(x)是整式时,定义域为R;?
  (2)当f(x)是分式时,定义域是使分母不等于0的x取值的集合;?
  (3)当f(x)是偶次根式时,定义域是使被开方式取非负值的x取值的集合;
  (4)当f(x)是零指数幂或负数指数幂时,定义域是使幂的底数非零或大于0的x取值范围;?
  (5)当f(x)是对数式时,定义域是使真数大于0的x取值的集合;?
  (6)正切函数的定义域是{ };余切函数的定义域是{x|x≠kπ,k∈Z};?
  (7)当f(x)表示实际问题中的函数关系时还应考虑在此实际问题中x取值的实际意义.
  2.求函数值域常用的方法有配方、换元、不等式、判别式、图像法等等.
  题型示例 点津归纳
  【例1】 求下列函数的定义域:
  (1)y= ;
  (2)y= ;?
  (3)y= ;?
  (4)y=log2004(tanx).
  【解前点津】 使整个解析式有意义的x取值集合即为所求.
  【规范解答】 (1)由 .
  (2)令1-2sinx≥0,则sinx≤ 利用单位圆可求得定义域为[2kπ- π,2kπ+ ],k∈Z.
  (3)由 知x是第一象限角或角x的终边在x轴正向或y轴正向上,故其定义域为
  [2kπ,2kπ+ ],k∈Z.
  (4)由tanx>0知x是一、三象限角,故为:(kπ+ ,kπ+π),k∈Z.?
  【解后归纳】 求函数定义域常常要解不等式(或不等式组),理解并掌握集合的“交”“并”运算是一项基本功.含三角式的不等式求解,要么利用单位圆,要么利用函数的图像及周期性.
  【例2】 当a取何实数时,函数y=lg(-x2+ax+2)的定义域为(-1,2)?
  【解前点津】 可转化为:确定a值,使关于x的不等式-x2+ax+2>0的解集为(-1,2).
  【规范解答】 -x2+ax+2>0 x2-ax-2<0,故由根与系数的关系知a=(-1)+2=1即为所求.
  【解后归纳】 解一元二次不等式,常联系一元二次方程的根或二次函数的图像.
  【例3】 已知函数f(2x)的定义域是[-1,2],求f(log2x)的定义域.
  【解前点津】 在同一法则f下,表达式2x与log2x的值应属于“同一范围”.
  【规范解答】 ∵-1≤x≤2,∴ ≤2x≤4故 ≤log2x≤4即
  log2 ≤log2x≤log216 ≤x≤16.
  【解后归纳】 已知F(g(x))的定义域为A,求F(h(x))的定义域,关键是求出既满足g(x)∈B,又满足h(x)∈B的x取值集合,在此例中,A=[-1,2],B=[ ,4].【高一数学求值域方法】相关文章:求函数值域的方法总结10-17求值域的方法总结10-17数学求最值方法总结10-23数列求极限的方法总结04-28函数求极值的方法总结04-27函数求极限的方法总结10-17数列求通项的方法总结10-17求定积分的方法的总结10-17高一数学学习方法归纳01-07高一数学学习方法分享03-26}

我要回帖

更多关于 已知y=2,z=3,n=4,则经过n=n+-y*z/n 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信