线性代数求解

对于这种函数,可以把z看成是x和y的隐函数。可以在对等式两边同时对x求导,那么对x可以正常求导,这时y属于常数项,直接时就等于零,遇到z就写成az/ax,整理之后求出az/ax。同样,可以在对等式两边同时对y求导,那么对y可以正常求导,这时c属于常数项,直接时就等于零,遇到z就写成az/ay就行,所以选C。向量组A:a1,a2,···am线性相关的充分必要条件是它所构成点矩阵A=(a1,a2,...,am)的秩小于向量个数m;向量组A线性无关的充分必要条件是R(A)=m.

}

这里我们讨论Ax=b的解以及矩阵A的列空间。

       Ax=0是肯定有解的,因为总存在x为全零向量,使得方程组成立。而Ax=b是不一定有解的,我们需要高斯消元来确定。我们还是利用上一篇讲述了Ax=0的解的矩阵A来举例说明:


我们可以得到上述方程组的增广矩阵(等式右侧不是全零向量,消元时值会改变,所以需要用增广矩阵)如下:


然后我们进行高斯消元可以得到:


从上面的矩阵可以看出,等式成立必须有


我们假设一个满足上面条件的b向量,例如:b=[1 5 1+5];并且令两个自由变量x2=0,x4=0,则我们将消元后的矩阵写成方程组的形式如下:



Xc是这个方程组的一个特解,因为当X2,X4取不同的值时,会得到不同的特解。那么我们如何得到方程的同解呢?即怎样用一般形式来表示所有的特解?

Ax=b的解就是特解Xc+Xn,证明如下:

Xc我们上面已经得到,Xn在中得到,则通解可以表示为:


至此,我们就得到了Ax=b的解。

通过上面的分析求解,我们知道当b满足下式时,方程组有解:

实际上,方程有解的条件是向量b属于矩阵A的列空间,即向量b可以表示为矩阵A的各列的线性组合。例如上面的例子:


方程的解就是矩阵A中各列前面的系数。

下面推广到更一般的情况,我们以矩阵A的不同情况来看解的结构(假设矩阵A为m*n的矩阵,秩为r):

1、r=n<m,即列满秩(所有列都有主元)

     由于所有列都有主元,则自由变量的个数为0,矩阵A的零空间中只有零向量。Ax=b的解的个数为0个或者1个.

2、r=m<n,即行满秩(所有行都有主元)

     由于所有行都有主元,消元后不会出现全为0的行,则Ax=b有无穷多解。且自由变量的个数为n-r,矩阵A的零空间中不只有零向量。

3、r=m=n,即列、行都满秩(矩阵可逆)

     由于列、行都满秩,则具有列满秩,行满秩的一些性质:零空间只有零向量,方程总有解且解唯一。


Ax=b有无穷多解或则没有解。

从上面的四种情况的讨论,我们可以总结如下:

如果想看一个线性方程组的解的情况,我们可以通过高斯消元法得到矩阵A的最简形式R,R的可能情况如下:

这四种情况分别对应的解的情况为:



}

我要回帖

更多关于 如何求一个矩阵的通解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信