一个关于原码,反码,补码的问题?

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

序言第一版答案写于2016年8月,当时我正试图理解补码规则的逻辑,并用结果写了一篇回答发在知乎和公众号上,因为收到的回复很乐观,让我一度认为已经把握问题的全貌。事实上答案在符号位的论述上存在谬误,多亏知友在回复中指出,为此我进行了更深入的思考,重新编辑此答案,希望能更接近问题的本原。

重温运算规则首先我想把整套关于原码反码补码的运算规则准确清晰地写一遍,方便急需应用的知友参考,也希望大家首先能记住这套规定,再开始进一步的探讨。

所谓原码就是机器数,是加了一位符号位的二进制数,正数符号位为0,负数符号位为1,计算机中存储、处理、运算的数据通常是8位、16位、32位或64位的,这里以最简单的8位为例讲解。注意符号位是包含在8位中的其中1位,故可直观读出的数只有7位(只有后7位数可以按权展开)。有心人可能注意到原码是有缺陷的,它只能表示255种状态,因为(+0)和(-0)其实是一个数,因此原码的表示范围成了-127到+127,这个问题需要神奇的补码来解决,因为在补码中被用来表示-128。

所谓反码,英语里又叫ones’ complement(对1求补),这里的1,本质上是一个有限位计数系统里所能表示出的最大值,在8位二进制里就是,在1位十进制里就是9,在3位十六进制里就是FFF(再大就要进位了)。求反又被称为对一求补,用最大数减去一个数就能得到它的反,很容易看出在二进制里减去任何数结果都是把这个数按位取反,0变1,1变零,所以才称之为反码。用原码求反码的方法是,正数不变,负数保留符号位1不变,剩下位按位取反。

所谓补码,英语里又叫two’s complement(对2求补),这个2指的是计数系统的容量(模),就是计数系统所能表示的状态数。对1位二进制数来说只有0和1两种状态,所以模是10也就是十进制的2,对7位二进制数来说就是,这个模是不可能取到的,因为位数多一位。用模减去一个数(无符号部分)就能得到这个数的补,比如-1110,事实上因为1111+1,稍加改变就成了(1111111-1010010)+1,所以又可以表述为先求反再加1。总结求补码的方法就是正数依旧不变,负数保留符号位不变,先求反码再加上1。

记住了怎么求补码,接下来讲讲运算。通过原码的符号位和数值,我们能迅速指出它代表的数,判断其正负并进行四则运算,相比而言反码和补码对于人则显得过于晦涩。如果说原码是给人看的数字语言,那么补码就是计算机的数字语言。计算机不需要知道什么是正负、大小,这些判断对它而言过于复杂。事实上它存储、处理、传输的数都只有补码一种形式,人所做的加减乘除,在计算机里只通过相加和移位就能解决,这都来自于补码系统的内在自洽和巧夺天工的神奇魔力,也是后文要阐述的重点。

对加法和减法,按上文的方法求得补码之后,直接相加就可以了,但相加的时候符号位一定要一起参与运算,有时候,两符号位相加或者接受来自低位的进位会发生溢出,就扔掉溢出的一位(稍后会解释为什么),由新的符号位决定结果的正负,如果是0表示正数,结果就是原码,如果是1表示负数,结果还要再求补数得到原码。

至此我介绍了原码反码补码的规定,以及如何求补码并进行加减法(乘除暂不涉及,事实上懂了加减法的奥秘,乘除很容易理解),对于一个工程人才来说,上面的内容已经足够应付所有具体问题。剩下的则是一些“无用”的思考,关于为何这套法则能够化减为加,以及人为规定的符号位在运算中为何总是能精确地指示结果的符号。

无用之用数字是用来记录现实世界数量属性的语言。

而任何计数系统都必须有两个参数:容量和精度。

模是衡量计数系统容量的参数。模代表了计数系统所能表示和存储的状态数。

任何有限的计数系统都有一个确定的模。如时钟的模是12(即只有一个位的十二进制系统,若再加一个大钟,使小钟转一周大钟加一刻度,就是有两个位的十二进制系统),再比如8位计算机的模是2^8=256D(每一位也可以单独看做一个模为2的计数系统)。

化减为加对同一计数系统中的数量可以定义运算如加减,但运算结果超出预设位数时,就要发生溢出,这个溢出其实就是模,是时钟的一整圈(因此丢掉它没有影响),如果进位没有被另一个计数系统接受,结果看似“失真”,本质上是进入了“第二次循环”。

以时钟系统为例:8+7=15D=13(十二进制)>10(十二进制),进位1溢出丢失(除非用另一个时钟接收这个进位),在表盘上(即一位十二进制计数系统中)呈现为3,而8-5=8+(-5)=3也得到了相同结果。这就说明在有限容量的计数系统中,+7和-5是完全相同的,而它们正是关于模12的一对补数。

因此我们在有限的计数系统做了这种定义:正数补数即为本身,负数A【补】=模-绝对值(A)。一个数加上另一个数(可以是正数也可以是负数),结果等于加上这个数的补数,若有进位则舍弃进位。这么做的重大意义在于极大地方便了计算机进行数据处理,要知道对人而言减法并非难事,但用门电路实现就复杂得多了,减之前还要判断大小考虑次序。

符号位参与运算在8位计算机中,一个字节可以表示256种状态,把字节看做一个钟的话,刻度可以随便标,不如取0点钟为-128,正对的6点钟为0,即存储范围是从-128到127,用二进制补码表示是11111(用来表示-128似乎是人为定义的,因为原码无法表示-128,按正常程序更无法求得其补码)。符号位是我认为理解补码的关键所在,也是关于补码最神奇的地方。人类“生硬”地添加了符号位,把256种状态剪成正负两半,还“生硬”地规定-128的补码为,但用补码运算的时候,一切就像“水往低处流”般正确和谐自然:符号位参与运算,接受来自低位的进位,永远能忠实地指示结果的正负。

我举个例子,你们感受一下:

所谓的“负数加负数会变成正数,正数加正数会变成负数”,本质还是在于,计数系统是无法表示超出其取值范围的计算结果的。

120D+120D=110000B,符号位的1来自低位进位,指示了结果是负数,所以需要求补得B也就是-16D,放在钟面上就是从120顺时针旋转120格到240的位置,只不过系统最大只取到127,240的位置就是-16的位置,而且-16和240正是关于模256的一对补数。-120D-120D=16D也是一样的道理。在有限的计数系统内,由于位数的限制,发生溢出的情况下无法得到计算真实值,得到的是真实值关于模的补数。看到这里是不是有那么点味道呢,我给你们总结一下:加法都是从低位往高位做的,如果两个数(补码),后七位相加产生了进位,说明
又溢出了一次,每当溢出一次(就是越过了-128这个正负分界点),符号就要反一下,0变1,1变0。符号是1的,说明大得越界了,需要再求个补,用取值范围内的负数表示结果;符号是0的,说明小得越界了,但由于正数的补数就是本身,就不必再求补了。

从八月底的初稿到这篇文章,中间经历了差不多四个月的时间,我对于补码问题的认识也经历了困惑到清晰到困惑到再清晰这一过程,其中修改超过十次,思考所花的时间更是不计其数。从参加考试的角度看,我熟记的运算规则早已足够我应付所有题目,但我仍然不愿意半途而废,原因有二:大一学习线性代数时,曾经挂过科,因为对于定理和公式背后的含义一无所知,而老师也不加讲解,只一味让我们死记做题。虽然很多同学都适应这种所谓的“工科数学学习”,然而这对我而言简直如同梦魇,没有理解内化如何能称得上学习,不过是应付考试然后忘的精光罢了。我很幸运的是,在准备补考时读到了网上广为流传的孟岩老师的文章《理解矩阵》,我记得那是一个冬天的晚上,读完文章后我很兴奋,一直到半夜都睡不着,这是我第一次体会到数学体系的和谐自洽以及数学的深刻性在工程中的巨大威力,从那以后我才逐渐找到了学习数学的乐趣。

《理解矩阵》中有一段话至今我还记得,现摘抄如下:

自从1930年代法国布尔巴基学派兴起以来,数学的公理化、系统性描述已经获得巨大的成功,这使得我们接受的数学教育在严谨性上大大提高。然而数学公理化的一个备受争议的副作用,就是一般数学教育中直觉性的丧失。数学家们似乎认为直觉性与抽象性是矛盾的,因此毫不犹豫地牺牲掉前者。然而包括我本人在内的很多人都对此表示怀疑,我们不认为直觉性与抽象性一定相互矛盾,特别是在数学教育中和数学教材中,帮助学生建立直觉,有助于它们理解那些抽象的概念,进而理解数学的本质。反之,如果一味注重形式上的严格性,学生就好像被迫进行钻火圈表演的小白鼠一样,变成枯燥的规则的奴隶。

“枯燥的规则的奴隶”又何止是在数学教学中出现的呢?如果你在大学工科学习过,你会发现这些人简直遍地都是,拿我在的浙大为例,有的是学生对课程并不理解,单靠考前突击刷题就拿到90分以上的成绩。

正是在这样的情形下,我决定尽我所能重新思考学到的每一个重要知识,并将其中一部分写成文章,一来有助于对思维的梳理,二来也是便于自己将来的回顾,倘若拙作还能对他人也有所帮助,从而使我给世界留下一些微不足道的影响,那真是幸甚了。

PS:我在最后后附上三者简单的关系(好吧我承认第一次看这篇文章看到后面太懵了):

原码就是第一位表示符号, 其余位表示值.

正数的反码是其本身 负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

正数的补码就是其本身 负数的补码是反码的基础上+1

}

本回答由深圳科都教育科技有限公司_提供

1的机器数是,最高位如果是0,代表为正,如果是1 ,代表为负,所以-1的机器数为,故其原码也为;
负数的补码是在原码上保持最高为不变,其余位取反并加1,所以-1的补码为;
负数的反码是在原码上保持最高为不变,其余位取反,所以-1的反码为。

选择8位的二进制数,结果如下:

我不知道呢你老师在什么情况下这样回答你,我只能根据计算机原理的知识说:只要是带符号数就会有原码,补码,反码。再说没有原码那来的补码呢?

正负数,存在计算机中,就称为:补码。

数字 0,其补码就是 。

数字-1,其补码就是 -1 = 。

原码反码,在计算机中,都是不存在的,不必关心。


· 把复杂的事情简单说给你听

 -1 的原码反码,都不存在。

下载百度知道APP,抢鲜体验

使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。

}

这种题目目的是考察计算机基础知识是否扎实。

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.

一个数在计算机中的二进制表示形式,  叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是。如果是 -3 ,就是 。

那么,这里的 和 就是机器数。

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 ,其最高位1代表负,其真正数值是 -3 而不是形式值131(转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

二. 原码, 反码, 补码的基础概念和计算方法.

在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

原码是人脑最容易理解和计算的表示方式.

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

三. 为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

所以不需要过多解释. 但是对于负数:

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[]原和[]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

这样0用[]表示, 而以前出现问题的-0则不存在了.而且可以用[]表示-128:

-1-127的结果应该是-128, 在用补码运算的结果中, []补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[]补算出来的原码是[]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

四 原码, 反码, 补码 再深入

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.

首先介绍一个数学中相关的概念: 同余

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余

正数进行mod运算是很简单的. 但是负数呢?

下面是关于mod运算的数学定义:

上面是截图, "取下界"符号找不到如何输入(word中粘贴过来后乱码). 下面是使用"L"和"J"替换上图的"取下界"符号:

回拨2小时 = 前拨10小时

回拨4小时 = 前拨8小时

回拨5小时= 前拨7小时

注意, 这里发现的规律!

结合上面学到的同余的概念.实际上:

距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:

这个定理是很显而易见的.

如果想看这个定理的证明, 请看:

接下来回到二进制的问题上, 看一下: 2-1=1的问题.

先到这一步, -1的反码表示是. 如果这里将[]认为是原码, 则[]原 = -126, 这里将符号位除去, 即认为是126.

2-1 与 2+126的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1

所以说一个数的反码, 实际上是这个数对于一个膜的同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值! 这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!

而2+126很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果.

既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加1, 还能得到正确的结果?

如果把[]当成原码, 去除符号位, 则:

其实, 在反码的基础上+1, 只是相当于增加了膜的值:

此时, 表盘相当于每128个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是[-128, 128].

但是由于0的特殊情况, 没有办法表示128, 所以补码的取值范围是[-128, 127]

本人一直不善于数学, 所以如果文中有不对的地方请大家多多包含, 多多指点!

}

我要回帖

更多关于 原码反码补码转换例题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信